Forthcoming articles

International Journal of Vehicle Information and Communication Systems

International Journal of Vehicle Information and Communication Systems (IJVICS)

These articles have been peer-reviewed and accepted for publication but are pending final changes, are not yet published and may not appear here in their final order of publication until they are assigned to issues. Therefore, the content conforms to our standards but the presentation (e.g. typesetting and proof-reading) is not necessarily up to the Inderscience standard. Additionally, titles, authors, abstracts and keywords may change before publication. Articles will not be published until the final proofs are validated by their authors.

Forthcoming articles must be purchased for the purposes of research, teaching and private study only. These articles can be cited using the expression "in press". For example: Smith, J. (in press). Article Title. Journal Title.

Articles marked with this shopping trolley icon are available for purchase - click on the icon to send an email request to purchase.

Register for our alerting service, which notifies you by email when new issues are published online.

Open AccessArticles marked with this Open Access icon are freely available and openly accessible to all without any restriction except the ones stated in their respective CC licenses.
We also offer which provide timely updates of tables of contents, newly published articles and calls for papers.

International Journal of Vehicle Information and Communication Systems (36 papers in press)

Regular Issues

  • Journey in vehicular ad-hoc network: a survey of message dissemination approaches and their delays   Order a copy of this article
    by Puja Padiya, Amarsinh Vidhate, Ramesh Vasappanavara 
    Abstract: Vehicular Ad-Hoc Network (VANET) is currently an active area of research and aims to improve vehicle, road safety, traffic efficiency, convenience and comfort for drivers as well as passengers. This paper provides a state of the art overview of VANET standards, architectures, channel access methods and message dissemination approaches. A detailed survey based on delays, especially those that occur in reactive message dissemination approaches, with a short survey of predictive message dissemination approaches, has been presented. We also highlight our view on some of the open issues to be addressed.
    Keywords: VANET; vehicular ad-hoc network; data dissemination; road safety; routing; delays; quality of service; standards; architectures; channel access.

  • Secure data aggregation scheme based on node self-adaptive monitoring for wireless sensor networks   Order a copy of this article
    by Shuguang Zhang, Qian Wang, Yichen Wu, Hao Wang 
    Abstract: Malicious nodes in a wireless sensor network will cause a great deviation in data aggregation. Such malicious nodes assigned with the aggregation task can forge and send a mass of false data. As a result, the network may consume a mass of resources and users may make wrong decisions. Concerning this problem, a secure data aggregation scheme based on node self-adaptive monitoring is proposed in this paper. According to the scheme, a master cluster head node and a vice cluster head node are selected, wherein the vice cluster head node verifies the aggregation data produced by the master cluster head, the intra-cluster monitoring nodes monitor the behaviour of the master and vice cluster head nodes in a self-adaptive manner. Besides, the confidence interval theory is introduced to evaluate and calculate the credibility of nodes and highly credible node data are selected for data aggregation. Both theoretical analysis and experimental results show that our scheme can not only effectively recognise and shield malicious nodes, enhancing the accuracy of data aggregation, but also prevent malicious master cluster head nodes from forging and sending a lot of false data.
    Keywords: wireless sensor networks; secure data aggregation; self-adaptive monitoring; confidence interval; credibility.

  • Cloud-assisted multi-tier hierarchical safety routing strategy for collision avoidance in a vehicular ad hoc network   Order a copy of this article
    by Nalina V, P. Jayarekha 
    Abstract: The Vehicular Ad hoc network (VANET) comprises a number of moving vehicles that establish wireless communication between them directly or using fixed infrastructure. Generally, the vehicles in VANET can obtain various services such as safety and comfort by establishing cooperative communication among them or from global servers through the internet. The main intention of VANET is to protect human lives from a dangerous situation and avoid chain collisions by alerting vehicles through emergency messages. Disseminating emergency messages in a hazardous area through single hop or multi-hop is a fundamental approach for efficiently delivering the emergency alert messages to all vehicles. However, the dissemination approaches incur a high redundant rate and inefficient use of network resources. The design of safety message dissemination protocols has to ensure reliable data delivery with strict delay deadline and also use the network resources in an efficient way. Taking into account the multicriteria information in dissemination oriented decision making is an appropriate solution for critical message communication. This paper proposes a Cloud-assisted Multi-tier Hierarchical Safety Routing (CM-HSR) strategy to avoid chain collisions with efficient resource usage. Initially, the CM-HSR divides the vehicles into a logical multi-tier hierarchical structure based on multiple information retrieved from cloud and roadside infrastructure. For effectively handling an emergency situation and network dynamism, the CM-HSR dynamically changes the multi-tier structure with the help of roadside infrastructures. To ensure reliable delivery with minimum redundant rate, the CM-HSR incorporates two mechanisms that are Accident severity level based Dangerous region Formation (ADF) and Multicriteria Decision Making (MDM). Finally, the simulation results demonstrate that the proposed CM-HSR attains better performance in terms of latency, duplicate packets, number of collisions, number of transmitted data packets, reachability, overhead, and number of secondary collisions in evaluation.
    Keywords: Cloud-assisted VANET; logical multi-tier hierarchical structure; multicast message dissemination; multicriteria decision making; optimal forwarder vehicle selection.

  • Adaptive cruise hierarchical control strategy based on model predictive control   Order a copy of this article
    by Shuo Zhang, Qiang Yu, Shihao Li, Yibo Wang, Xianyong Gui 
    Abstract: In order to avoid the influence of adaptive cruise control (ACC) system on ride comfort and traffic flow, a hierarchical control strategy is proposed. It is divided into speed control mode and distance control mode. According to the time to collision and the distance deviation between actual vehicle spacing distance and safe vehicle spacing distance, the distance control mode is divided in detail. A hierarchical control architecture of the ACC system is constructed. A longitudinal dynamics inverse model of the following vehicle is established to obtain the conversion relationships among the desired acceleration, the throttle opening and the brake master cylinder pressure. The prediction model for the preceding vehicle and following vehicle is established. The safety and the ride comfort of the vehicle are taken as the optimisation targets. Then, an upper controller based on model predictive control algorithm is constructed to obtain the desired acceleration. In order to prevent switching error between drive torque and brake torque, and improve control accuracy, the lower controller is designed by integral separation PID control algorithm to track the preceding vehicle speed and the safe vehicle spacing distance. The simulation results show that the strategy can effectively control the following vehicle speed under rapid acceleration/rapid deceleration condition and steady-state cruising condition, and track the preceding vehicle speed near the safe vehicle spacing distance to ensure the safety, high efficiency and ride comfort.
    Keywords: adaptive cruise control; hierarchical control strategy; model predictive control; intelligent vehicle; time headway.

  • Vertical handover techniques in VANETs   Order a copy of this article
    by Poonam Thakur, Anita Ganpati 
    Abstract: VANET refers to an ad-hoc network made by different nodes where a node is either a vehicle or a roadside unit. In VANETs, two types of communication mainly occur: V2V or V2I (V2V refers to the information exchange and communication between two vehicles and V2I between vehicle and an interface). Vehicle to Everything (V2X) is another communication in VANET. Since vehicles are mobile devices that are always in transit, there is a need to switch from one network to another network. This process of switching from one network to another network is known as handover and it has become a very interesting topic of research for the vehicular ad hoc network (VANET) research community. A lot of research is going on this area of handovers whether it is for MANETs or VANETs or any other wireless networks. There are a number of different categories of handover techniques available for VANETs. In this paper, we start with the basics of handover techniques then move specifically to the vertical handover technique in detail. The different phases of the handover process are explained along with the literature survey in each of them. The paper will be presenting the survey of almost all the vertical handover techniques designed for VANETs so far in the last decade (2008-2018). No doubt there are a number of survey articles available in this field but this paper discusses the most recent advancements made, excluding the basic ones which can be available from the references mentioned. This study thus contributes to the understanding of the available options and gaps for further studies and standardisation activities in this area of research. There is statistical information in the end and a number of tables in the paper that provide comparison and information about various parameters of VANET algorithms. The paper is going to be a help for the future researchers in the field as it provides detailed information about the different phases of vertical handover and also presents the research going on in each of the phases during the few previous years. Several open research issues in this field are also listed along with the conclusion of the paper.
    Keywords: V2V; V2X; UMTS; WiMAX; Wi-Fi; WAVE; LTE.

  • End-to-end delay and backlog bound analysis for hybrid vehicular ad hoc networks: a stochastic network calculus approach   Order a copy of this article
    by Shivani Gupta, Vandana Khaitan 
    Abstract: This paper studies a hybrid Vehicular Ad-hoc Network (VANET) that incorporates two different technologies, i.e., IEEE 802.11p and the long-term evolution. End-to-end delay and backlog are acknowledged as major performance measures of vehicular networks that characterise its Quality of Service (QoS), therefore, in this paper we focus on obtaining some measures of these two attributes. We obtain the probabilistic upper bounds on the end-to-end delay and backlog instead of evaluating the delay and backlog in view of the fact that providing the probabilistic bounds is more reasonable as in some real-life scenarios it may be intricate to obtain the closed-form results. To obtain the probabilistic bounds on delay and backlog, a queueing network model is proposed that represents the message dissemination scheme used in the hybrid VANET architecture. The novelty of this paper lies in the fact that instead of considering a Markovian queueing network, the arrival and service processes in the proposed queueing network are assumed to be self-similar and heavy-tailed distributed, as such characteristics are extensively reported in communication networks. The mathematical analysis of the proposed queueing network follows the stochastic network calculus approach for the reason that it supports generally distributed arrival and service processes. Further, the probabilistic upper bounds on the end-to-end delay obtained using heavy-tailed arrival and service times are compared with the delay bounds obtained using exponential arrival and service times to validate the appropriateness of using heavy-tailed characteristics of the network traffic. In addition, a comparative study of hybrid VANET with the other two conventional architectures of VANET, i.e. ad-hoc network only and cellular network only, is also provided in the paper.
    Keywords: hybrid VANET; queueing network; stochastic network calculus; end-to-end delay; backlog; probabilistic bounds; heavy-tailed traffic.

  • Camouflage-based location privacy preserving scheme in vehicular ad hoc networks   Order a copy of this article
    by Leila Benarous, Benamar Kadri, Saadi Boudjit 
    Abstract: Location privacy is critical and preserving it is essential. The tracking exposes the real time location, history of visited places and parsed trajectories. Metaphorically speaking, it is the cyber equivalent of physical stalking and as dangerous as it is. In vehicular networks in particular, this issue is serious because autonomous vehicles timely transmit their locations, headings, speed and identity to neighbouring vehicles and/or service infrastructures. To preserve the location privacy, various pseudonym-based approaches exist, mainly focusing on unlinkable pseudonym change strategies. In this paper, we propose a camouflage-based solution that prevents the linkability of pseudonyms even within low density roads where the tracking chances are high. The solution is simulated using NS2 against a global passive attacker that executes the semantic and syntactic linking attacks. The results demonstrate the effectiveness of the solution in protecting privacy.
    Keywords: autonomous vehicle; vehicular network; privacy; attacker; simulation; linkability.

  • 3D object detection based on image and LIDAR fusion for autonomous driving   Order a copy of this article
    by Guoqiang Chen, Huailong Yi, Zhuangzhuang Mao 
    Abstract: 3D object detection is the fundamental task of autonomous driving. The existing approaches are very expensive in computation owing to the high dimensionality of point clouds. We use the 3D data more efficiently by representing the scene from the RGB image and the Birds Eye View (BEV). The whole network is composed of two parts: one is the 2D proposal network for 2D region proposal generation, and the other is the 3D region-based fusion network to predict the 2D locations, orientations, and 3D locations of the objects. First, we fuse the BEV feature map and the RGB image to enhance the input. Second, we adopt the 3D encoding form with 2D-3D bounding box consistency constraints and design ROI-wise feature fusion to predict location information. Our experimental evaluation on both the KITTI as well as a large scale 3D object detection benchmark shows significant improvements over the state of the art.
    Keywords: 3D object detection; image and LIDAR; deep learning; multisensory fusion; autonomous driving.

  • Modular arithmetic and subset sum problem: a state-of-art technique in information security issues towards a smart vehicular system   Order a copy of this article
    by Anirban Bhowmik 
    Abstract: Nowadays, vehicles are used at a large scale in modern society. But in many countries the current traffic-safety statistics are very terrifying. Many people are killed and injured in road accidents. To reduce this problem, governments and manufacturers have launched different initiatives, such as the use of safety belts, airbags, antilocking brake systems and smart vehicular transportation systems. Upcoming traffic safety initiatives in smart transportation systems depend on information technology, and this technology also helps to authenticate and track vehicles in the system. Recent smart vehicular systems use different types of network, such as VANETs, AI-based applications, etc., that aim to provide a safer, coordinated, smooth and smart mode of transportation. This article focuses on the communication security issues in smart vehicular applications. Transmitting messages efficiently and accurately among vehicles is the key issue in this system. At present, the communication in smart transportation systems is vulnerable to various types of security attack because it uses an open wireless connection. The different types of attack are secrecy attack, routing attack, data authenticity attack, and attack on authentication; besides these, in a dense environment, the vehicle may receive multiple messages at the same time. Therefore, how to complete the authentication of multiple messages in a short time is an urgent problem. To address these problems, here we have introduced a technique using the concepts of approximation algorithm and linear congruence. The different types of experiment on our technique and their results confirm that our scheme is very secure, robust and efficient for data transmission in smart vehicular.
    Keywords: smart vehicular system; intermediate key; linear congruence; approximation algorithm; subset sum problem; session key; nonlinear function; CLS.

Special Issue on: Big Data Innovation For Sustainable VANET Management

  • An automatic moving vehicle detection system based on hypothesis generation and verification in a traffic surveillance system   Order a copy of this article
    by Smitha Jolakula Asoka, N. Rajkumar 
    Abstract: An intelligent transportation system has a major topic called traffic surveillance. In a complex urban traffic surveillance system, booming of vehicle detection and tracking is an problematic dilemma. To overcome this, a two-stage approach for a moving vehicle detection system is proposed in this paper. The proposed system mainly consists of two stages namely, hypothesis generation and hypothesis verification. At the first step, hypotheses are generated using the concept that shadows beneath the vehicles are darker than the road region. The second step verifies whether a generated hypothesis is correct or not using an optimal artificial neural network (ANN). The weights corresponding to the ANN are optimally selected using the grasshopper optimisation algorithm. Through experimental results, it is shown that the proposed moving vehicle detection system performs with better accuracy than other methods.
    Keywords: traffic surveillance system; moving vehicle detection; tracking; hypothesis generation; hypothesis verification; feedforward neural network; grasshopper optimisation algorithm.

Special Issue on: Research Challenges and Emerging Technologies in Autonomous Systems

  • Fuzzy-based local agent routing protocol for delay-conscious MANETs   Order a copy of this article
    by C. Venkataramanan, B. Senthilkumar 
    Abstract: Owing to the demand on multimedia applications, most researchers still concentrate on the area of Mobile Ad hoc NETworks (MANETs) to ensure the quality of services. MANET is an infrastructure-less network, where the devices (i.e. nodes) are self-configuring together and form the network without any central coordinator. Owing to the absence of central monitoring, MANET experiences various issues such as packet loss, topological control and delay. In order to address those problems in this paper, the enhanced version of Ad hoc On Demand Distance Vector (AODV) routing protocol is proposed. According to this proposed approach, each node in the network has to find the number of packets in the queue and calculate the weight value, which is used to predict the best routing path for ongoing transmission. The local agents are nominated for collecting and processing the information. The local agent performs the decision-based routing by using fuzzy inference model (AODV-FLA).
    Keywords: AODV; energy usage; fuzzy; MANETs; routing; QoS.

  • An experimental analysis of quad-wheel autonomous robot location and path planning using the Borahsid algorithm with GPS and Zigbee   Order a copy of this article
    by Siddhanta Borah, R. Kumar, Subhradip Mukherjee, Fenil. C.Panwala, A. Prasanna Lakshmi 
    Abstract: This paper presents a hardware system structure and wireless navigation system for both localisation and path navigation of a mobile robot, implementing a 32-bit ARM processor (LPC2148 Board) into the design process of a mobile robot integrated with GPS and a ZigBee wireless communication device. A novel path-navigation algorithm (Borahsid algorithm), with less complexity than the existing algorithms adopted for mobile robot realistic work, uses GPS localisation as well as ZigBee communication. For simulation purpose MATLAB programming language has been used to simulate the mobile robot localisation and path navigation, and the results show the effectiveness of the model and the feasibility of the Borahsid algorithm. However, the entire control structure is executed and the experimental results were obtained in a real time system. The experimental results authenticate the performance and steadiness of the implemented control system process.
    Keywords: ARM processor; GPS; ZigBee-based communication; Borahsid algorithm; MATLAB.

Special Issue on: ICBCC-2019 Intelligent Transportation Systems for Smart Cities

  • Improved coverage measurements through machine learning algorithms in a situational aware channel condition for indoor distributed massive MIMO mm-wave system   Order a copy of this article
    by Vankayala Chethan Prakash, G. Nagarajan, V. Subramaniyaswamy, Logesh Ravi 
    Abstract: In a massive MIMO (Multiple Input Multiple output) mm (millimetre)-wave system, the channel conditions are measured and analysed for a better placement of reflectors or antennas. In order to increase the coverage area and to reduce interference among users factors such as pathloss and power delay profile are extracted from the channel impulse response (CIR) i.e. from the received signal with respect to transmitter and receiver channel propagation conditions. In a distributed indoor massive MIMO mm-wave system, pathloss and power delay profile are evaluated for line of sight (LoS) and non-line of sight (NLoS) environments at frequencies such as 28 and 39 GHz. Based on these factors, a dataset is constructed for 28 GHz. Algorithms such as Support Vector Machine (SVM), KNN and Fine Tree are considered. These algorithms are trained with a set of datasets and are tested for performance metrics such as Mean Absolute Error, Correlation Coefficient, Root Mean Squared Error, Relative Absolute Error, and Root Relative Squared Error, which are evaluated. Simulation results show an accuracy of 94% and 95% using SVM, 93.8% and 94.5% using KNN, and 93.2% and 93.8% using Fine Tree algorithm for pathloss and power delay profile respectively.
    Keywords: Fine Tree; KNN; massive MIMO; mm-wave; pathloss; power delay profile; support vector machine.

  • Effect of feature and sampling ratio on tool wear classification during boring operation using tree-based algorithms   Order a copy of this article
    by Surendar Selvasubramaniam, Elangovan Mahadevan, Akshay Elangovan, Vijayakumar Varadarajan 
    Abstract: The tool condition monitoring (TCM) system is used to predict the tool wear during the machining process. The predominant wear is the flank wear which has its impact on the surface roughness of the workpiece that is being machined. The quantum of flank wear is to be ascertained so that a decision could be made whether the time has come for the insert to be replaced. Although since the wear is continuous, it may be divided into three stages and may be classified as to which stage the tool wear falls into. Wear prediction may be carried out by extracting information from the vibration signals acquired during machining and interpreting them using machine learning. This paper confers on monitoring the uncoated carbide tooltip during boring operation using tree-based classifier algorithms such as random forest, J48, logistic model tree and gradient-boosted tree, in order to study the effect of feature and sampling ratio on tool wear classification when tree-based algorithms are used. Also, the statistical features and histogram features were compared for various cutting tool conditions to explore a better classifierfeature combine.
    Keywords: J48; random forest tree; gradient-boosted tree; logistic model tree; Knime analytics platform.

  • Dynamic formulation of a two link flexible manipulator and its comparison analysis with a knuckle joint cantilever   Order a copy of this article
    by Prasenjit Sarkhel, Nilotpal Banerjee, Nirmal Baran Hui 
    Abstract: In the present study, a dynamic modelling technique for a two-link flexible planar manipulator is presented. The developed manipulator model can include an arbitrary number of flexible links. The gross equation of motion of each flexible link has been obtained by composing the rigid body motion and a small elastic deformation of each link. In order to bring simplicity, the modelling technique has been applied to model a two-link flexible manipulator. The analytical derivation and final expression for the equation of motion has been shown for the two-link flexible manipulator using the proposed modelling method. Later on, a comparison analysis has been studied between the proposed manipulator model and a simple cantilever with a knuckle joint. Finite element analysis of the beam has been done in ANSYS 17.1 considering different types of element under different loading conditions. The various numerical results have been generated at different nodal points by taking the origin of the Cartesian coordinate system at the fixed end of the beam. Finally, a comparison analysis has been made to find a way to validate the proposed mathematical modelling.
    Keywords: flexible manipulator; dynamic modelling; equation of motion; cantilever beam; knuckle joint.
    DOI: 10.1504/IJVICS.2021.10035220
     
  • Multivariate short-term traffic flow prediction based on real-time expressway toll plaza data using non-parametric techniques   Order a copy of this article
    by Annu Mor, Mukesh Kumar 
    Abstract: Accurate real-time traffic flow prediction is a vital component of an Intelligent Transportation System (ITS).The real-time traffic flow prediction helps transportation authorities as well as travellers for better route guidance. In this study, a novel approach is proposed for accurate toll plaza traffic prediction by introducing heterogeneous data sources other than traffic volume data. Toll data is analysed with exogenous factors, such as weather conditions and holidays. Here, ten non-parametric techniques is applied for traffic prediction on a real-time multivariate dataset. The proposed approach is validated using data collected from Pinjore-Kalka Toll Plaza, Chandigarh, India. The performances of the non-parametric models are compared on the basis of mean square error, absolute mean square error, coefficient of determination and correlation. The experimental results revealed that the random forest regression technique outperforms other techniques, achieving an accuracy of 90%. The proposed approach can be used for further proxy measure of level-of-service to design the existing infrastructure more efficiently for application in smart cities.
    Keywords: traffic flow; intelligent transportation system; non-parametric technique; multivariate time series data; proxy measure. Level-of-Service.

Special Issue on: Advanced Intelligent Computing Techniques in Vehicular Communication, Computing and Applications

  • Optimised design of LCC-S compensation topologies for wireless power transfer with dynamic load for electric vehicles   Order a copy of this article
    by Ning Wang, Qingxin Yang 
    Abstract: This paper proposes a LCC-S compensation network structure to solve the problem of dynamic load changing that generally exists in wireless power transfer systems. Transmitter current, phase angle, power factor, output power, and efficiency are also analysed when the load changes. By preparing an experimental platform and taking a three-phase permanent magnet synchronous motor as equivalent load, we study the relationship between output power of the motor and output current of the transmitter under different motor speeds and torques. We find that the output current is stable at 1.87 A with resonant frequency at 20 kHz. Finally, system parameters are optimised by changing the ratio of each compensation element parameter, which improves the output efficiency by 7.69%.
    Keywords: wireless power transfer; dynamic load; constant current output; compensation network; electric vehicles.

  • Research on map matching of lidar/vision sensor for automatic driving aided positioning   Order a copy of this article
    by Qing An, Xijiang Chen, Yuhua OuYang 
    Abstract: Aiming at the technical difficulties of map matching aided positioning based on lidar/vision sensor, the joint calibration of lidar/vision sensor and point cloud/image registration technology, as well as the dynamic environment interference removal method based on depth learning are studied in this paper. A lightweight coding-decoding architecture is introduced. We use deep separable convolution technology to extract urban environment features and generate semantic-level feature descriptors. The similarity measurement criteria that contain semantic information and geometric state are built. Then, we perform robust feature matching. Finally, a map matching location model based on recursive Bayesian filtering optimisation framework and an estimation method of location confidence are proposed. This realises the map assistant positioning under the complex environment of the city. In typical urban environments, the speed of feature extraction and matching is better than 0.1 s, the success rate of matching is more than 95%, and the positioning accuracy of high-precision map matching is better than 20 cm.
    Keywords: laser radar; visual sensor; point cloud; depth learning; map matching.

  • Study on intelligent traffic search method based on driver facial feature analysis   Order a copy of this article
    by Kaidi Chen, Libing Hu, Miaobo Yao, Ledan Qian, Yongchun Zhang 
    Abstract: With the rapid development of internet technology and biometrics technology in China, artificial intelligence has gradually entered into every aspect of people's life. Big data is used to upgrade intelligent traffic search for people, which improves the efficiency and accuracy of people search for people. Intelligent traffic search is a hotspot in the field of biometric identification and plays an important role in social stability. As an important feature, driver's face image can not only provide great help to the detection of illegal vehicles, but also help to carry out the tracing of missing people, so as to maintain social harmony and stability. Therefore, the intelligent traffic search method based on the analysis of driver's facial features has a broad application prospect and research value. This paper investigates the current international top facial recognition algorithm technology level, and proposes a face image illumination invariant feature extraction algorithm and face feature detection ASM algorithm. The experimental results show that the intelligent traffic search method in this paper has a good recognition rate, and the study also has a certain guiding significance for the application of image processing in the field of intelligent traffic.
    Keywords: driver facial features; artificial intelligence; intelligent traffic search; face feature detection.

Special Issue on: AIST2019 Empowering Intelligent Transportation Using Artificial Intelligence Technologies

  • Network traffic analysis using machine learning techniques in IoT network   Order a copy of this article
    by Shailendra Mishra 
    Abstract: End-node internet-of-things devices are not very intelligent and resource-constrained; thus, they are vulnerable to cyber threats. They have their IP address, and once the hacker traces the IP, it becomes easy to get into the network and exploit the other devices. Cyber threats can become potentially harmful and lead to infection of machines, disruption of network topologies, and denial of services to their legitimate users. Artificial intelligence-driven methods and advanced machine learning-based network investigation protect the network from malicious traffic. The support vector machine learning technique is used to classify normal and abnormal traffic. Network traffic analysis has been done to detect and protect the network from malicious traffic. Static and dynamic analysis of malware has been done. Mininet emulator is selected for network design, VMware fusion is used for creating a virtual environment, the hosting OS is Ubuntu Linux, and the network topology is a tree topology. Wireshark was used to open an existing packet capture file that contains network traffic. Signature-based and heuristic detection techniques were used to analyse the signature of the record, which is found using a hex editor, and proposed rules are applied for searching for and detecting these files that have this signature. The support vector machine classifier demonstrated the best performance with 99% accuracy
    Keywords: network traffic analysis; IoT; cyber threats; cyber attacks; machine learning.

  • A novel framework for efficient information dissemination for V2X   Order a copy of this article
    by Ravi Tomar, Hanumat G. Sastry, Manish Prateek 
    Abstract: This paper is focused on presenting a robust framework for information dissemination in vehicular networks using both Vehicle to Vehicle (V2V) and Vehicle to Infrastructure (V2I) communication modes. The framework is designed to first prioritise the generated information and then, based on the priority, the message is disseminated over the network using one of the techniques for V2V or V2I. The paper first discusses the need for information dissemination and further proposes the novel framework for efficient information dissemination. The framework comprises two techniques for disseminating the information through V2V or V2I. The two techniques are presented and supported by the experimental, simulation and statistical analysis results. The results obtained are compared with existing mechanisms for information dissemination and are found to be performing better than standard information dissemination mechanisms.
    Keywords: information dissemination; V2V; V2I; priority based.

  • Automated storyboard generation with parameters dependencies for regression test cases   Order a copy of this article
    by Nishant Gupta, Vibhash Yadav, Mayank Singh 
    Abstract: In recent trends and advancement of agile technology, the industry demand is for an effective and useful specification from the customer to reduce the effort, time and cost of software development. The storyboard is an effective tool to cater for the customer's requirements in an efficient manner. Our proposed framework and tool STORB will provide the platform where customer and business analyst may use the tool to generate a storyboard based on provided functionalities and parameters. The tool will provide detailed information about the customers requirements and generate the storyboard. Further, test data can also be generated for testing test cases. The tool has been used for three functionalities and their parameters on login functionalities of web application. The tool also defines the dependencies among parameters so that regression test cases can be generated. The result shows a useful significance of the tool in the software industry for the current trend of agile development.
    Keywords: agile testing; regression testing; storyboard;test cases; functionalities.

  • Machine learning techniques applied to call admission control in 5G mobile networks   Order a copy of this article
    by Charu Awasthi, Prashant Kumar Mishra 
    Abstract: Highly reliable applications with low latency are key feature in 5G networks. In the prevailing scenario of efficient mobile network systems, the Quality of Service (QoS) depends on the regulation of traffic volume in wireless communications, known as the Call Admission Control (CAC). 5G networks are also very important for Intelligent Transportation Systems (ITS) as they can be used for quick detection and controlling of traffic, hence can be informative, sustainable, and more effective. Machine learning is the concept of providing the power to learn and develop mechanically, by practising. It also provides the power to attain learning and development in the absence of classical methods such as programming. It also permits wireless networks such as 5G to be increasingly dynamic and predictive. With this feature, the formulation of the 5G vision seems possible. With the use of machine learning and neural networks, this paper proposes various CAC methods deployed for 5G multimedia mobile networks. This can be achieved by delivering the best from all the attributes of soft computing that are deployed in the current mobile networks for ensuring recovery of efficiency of the prevailing CAC methods.
    Keywords: artificial intelligence; machine learning; neural networks; 5G mobile networks; wireless networks; intelligent transportation system.

  • PALCT: vehicle-to-vehicle communication based on pseudonym assignment and encryption scheme using delay minimisation cover tree algorithm   Order a copy of this article
    by Righa Tandon, P.K. Gupta 
    Abstract: Vehicle-to-Vehicle communication is one of the new paradigms of networking which should be secure, fast and efficient. In this paper, we propose a framework that implements the pseudonym-based authentication scheme in which communication among vehicles is encrypted by using matrix array symmetric key (MASK), digital signature algorithm (DSA) and intelligent water drop (IWD). The proposed security scheme also ensures handling of many security attacks such as key-guessing, non-repudiation, replay and modification. In the proposed scheme, to preserve the vehicles identity, we have provided different pseudonyms to each vehicle in the network, which ensures secure communication among vehicles. Furthermore, the proposed delay minimisation cover tree algorithm ensures the issue of time-delay during vehicle to vehicle communication. In this algorithm, we have used Dijkstras algorithm for finding the optimal shortest path during vehicular communication. Obtained results show that the proposed scheme is effective and efficient as it reduces the time-delay by 4% for 140 vehicle nodes and 28.4% for 1000 vehicle nodes.
    Keywords: pseudonyms; vehicle-to-vehicle communication; security; time-delay.

Special Issue on: Intelligent Edge Computing for Connected and Autonomous Vehicles Trends and Challenges

  • Predictive mechanism of a modified bug controller for mobile robot path navigation   Order a copy of this article
    by Subhradip Mukherjee, R. Kumar, Siddhanta Borah 
    Abstract: Bug approaches are popular for mobile robot navigation in challenging environments. The traditional bug approach follows a virtual straight line from source to target location and exhibits obstacle boundary following behaviour if an obstacle is present between source and target location. This behaviour of the Bug approach consumes more travel time towards target location. In addition, obstacles with larger size situated in central-left or central-right side of the virtual straight line between source and target location create navigation problem for Bug approaches. A modified bug (m-Bug) controller has been proposed and realised for mobile robot path navigation with a better solution in MATLAB and V-REP simulation environments. With range sensors, the proposed controller was found to exhibit optimised travel time and path length in the given environments. Different static environments with single and multiple obstacles have been considered to test the proposed controller. Various simulation results and comparative analysis highlight the superiority of the controller.
    Keywords: bug approach; obstacle boundary following behaviour; modified bug controller; V-REP; travel time; path length.

  • A queuing theory based delay efficient packet scheduler for machine type communication   Order a copy of this article
    by T.N. Sunita, A. Bharathi Malakreddy 
    Abstract: Lately, there has been a drastic change in the telecommunication industry owing to the emergence of the Internet of Things (IoT). IoT is the network through which various objects/devices are connected to accomplish a particular task or a goal with very little intervention of humans. Machine to Machine (M2M) plays a very important role in enabling IoT. Right now, Long-Term Evolution (LTE) is the best supporting technology for Machine Type Communication (MTC), because of its flexibility, compatibility and high availability of radio resource. As the LTE is mainly suitable for Human-to-Human (H2H) communication, MTC faces some challenges in LTE such as radio resource management and uplink-scheduling algorithms being unsuitable for MTC, because MTC have different traffic characteristics and are mainly uplink dominant. Moreover, these issues can be handled efficiently through virtualisation technology, which would give us the capability to better manage the network resources through technologies such as Network Function Virtualisation (NFV). In this paper, we use a queuing theory and propose a packet scheduler, which would model the regular and event-driven traffic and schedule the jobs in queues for request processing. Then using the Markov chain process, we calculate the queue length and determine the blocking probability. If there is high blocking probability and still there are some requests in a queue, then those requests will be processed in a virtual server for maximum network usage.
    Keywords: machine-to-machine; machine type communication; delay; packet scheduler; blocking probability; queuing theory.

  • Area efficient and high speed Galois field multiplier for mobile edge computing devices   Order a copy of this article
    by N. Sharath Babu, Gunti Hemanth Santosh, S.R. C.H. Murthy Tommandru, M. Shiva Kumar 
    Abstract: Multiplication is one of the most important arithmetic operations in communication devices and it is implemented using finite field or Galois field arithmetic in this work. The performance of the finite field multiplication operation is closely related to the finite field elements representation. The proposed polynomial based finite field bit parallel systolic array multiplier is able to achieve almost double the speed of existing multiplier with little extra area. There is a considerable reduction in area and power for the proposed word-level normal basis finite field multiplier compared with the existing multiplier. The results clearly indicate that the proposed methods improve the efficiency of finite field multipliers in terms of area, delay or power consumption. Mobile edge computing is becoming one of the prominent technologies that assist to achieve formidable specifications of 5G technology in terms of reliability, latency, scalability and throughput. In order to probe and determine the real time data efficiently, local computing and data offloading are carried out in evolving a joint computation algorithm.
    Keywords: high speed multipliers; finite field multiplication; parallel systolic array; edge devices; mobile edge computing.

  • Development of environment friendly nanoelectronic sensing elements for hybrid electric vehicles   Order a copy of this article
    by Dayanand B. Jadhav, Rajendra D. Kokate 
    Abstract: Nanomaterials and nanodevices have a major impact in the development of many innovative systems and they are the potential replacement for CMOS technology devices. Nanoelectronic sensors are essential in the development of hybrid electric vehicles and autonomous systems. This research paper focuses on the synthesis of ZnO nanoparticles and development of nanoelectronic sensing elements for automotive applications and hybrid electric vehicles. Environment friendly ZnO nanoparticles are used in this work to avoid harmful gases. ZnO nanoparticles are synthesised using Aloe vera extracts through mediated synthesis route. Structural and morphological characteristics are experimentally studied using various spectroscopic and microscopic measures. ZnO nanomaterial elements and LPG sensing properties are systematically investigated to check the suitability for electric vehicle applications. The effects of operating temperature on gas response, resistance and sensitivity characteristics are analysed using various experiments. The performance of our nanoelectronic sensing element is found to be superior to similar sensing elements in terms of working temperature, percentage response, response time and recovery time.
    Keywords: nanoparticle; nanoelectronic sensors; LPG gas sensor; hybrid electric vehicles; autonomous systems; nanotechnology.

  • IoT enabled machine learning framework for social media content based recommendation system   Order a copy of this article
    by Adinarayana Salina, E. Ilavarasan, K. Yogeswara Rao 
    Abstract: Analysing huge volumes of data from the social media tweets on product reviews provides a better understanding of any product. Exploring customer opinions from tweets is helpful to find the strengths and weaknesses of different products and features. There are several studies on product recommendations from Twitter product reviews. In this paper, Internet of Things based two-level product recommendation framework (TLPRF) is proposed to efficiently handle large amounts of Twitter users product reviews data. TLPRF consists of a Raspberry Pi microcomputer as an IoT mining machine and it is programmed to generate a feature level opinion summary. Feature level opinion is found to be useful in accomplishing the product ranking. Based on the customer interest in the product purchase request, a normalised ranking of each matching product is calculated from the feature-wise opinion summary, and the product with maximum ranked score is recommended to Twitter users. The proposed TLPRF is found to be superior to similar other approaches in terms of accuracy, precision, recall and f-measure.
    Keywords: internet of things; machine learning; ranking; summarisation; social networks; recommendation systems.

  • Vote mapping based improved human tracking for intelligent surveillance systems   Order a copy of this article
    by Kavita Wagh, Dipak B. Khandgaonkar 
    Abstract: Human tracking is a challenging task and significant part in the design of intelligent surveillance systems. Though the existing tracking techniques accomplished reasonable outcomes in terms of accuracy and robustness, there is scope for improving the tracking performance. In this paper, vote mapping of patched confidence methodology is used with the consecutively increasing number of patches. The system aims to provide robustness to occlusion and global scene changes by using the number of patches from the bounding box of an image. An individual patch is tracked by kernelised correlation filter and applied to the vote mapping methodology. The consecutively increasing number of patch approach and vote mapping provides robustness to the occlusion in real time tracking scenarios. The qualitative and quantitative analysis reveals the superiority of the proposed vote mapping-based tracker over the existing kernel-based trackers.
    Keywords: Correlation; human tracking; vote mapping; kernel; regression; surveillance systems.

Special Issue on: Emerging Technologies for Internet of Vehicles

  • Effectiveness evaluation method for traffic data acquisition based on vehicle-borne network   Order a copy of this article
    by Minglei Song, Binghua Wu, Rongrong Li 
    Abstract: In order to reduce the probability of traffic accidents and enhance the safety of vehicle traffic, a method for evaluating the effectiveness of traffic data collection based on a vehicle network is proposed. A virtual coil is set on the driving lane to detect vehicles through three features of texture change, foreground area and pixel movement within the coil. A traffic detector is introduced to collect traffic data for a long time. Based on the cognitive assessment theory, a comprehensive assessment index system for the effectiveness of traffic data collection is constructed to complete the assessment. The experimental results show that the evaluation time of this method is less than 18 s, and the evaluation energy consumption is lower than other methods above 20 J, which proves that the evaluation time of this method is shorter, the error is smaller and the energy consumption is lower.
    Keywords: vehicle-borne network; traffic data acquisition; traffic data evaluation.

  • A new prediction method of short-term traffic flow at intersection based on Internet of vehicles   Order a copy of this article
    by Ying Zheng, Ying Zhou 
    Abstract: In order to overcome the problems of large error and long time-consuming in the prediction of short-term traffic flow at intersections, a new short-term traffic flow prediction method based on the internet of vehicles (IoV) is proposed in this paper. In the IoV environment, the training samples are input into the prediction model of the IoV, the output value is calculated, and the error is obtained. Then, the weights and wavelet factors of the network are modified by a gradient descent algorithm. When the network error reaches the set accuracy or reaches the maximum training time, the training is stopped to get the predicted short-term traffic flow. The experimental results show that the mean square percentage error is about 0.01%, and the longest prediction time is 0.878 min. The fitting degree between the predicted value and the actual value of traffic flow is high, and the prediction effect is ideal.
    Keywords: internet of vehicles; intersection; short-term traffic flow; prediction.

  • Path planning method of automatic driving for directional navigation based on particle swarm optimisation   Order a copy of this article
    by Xian Luo, Rongtao Liao, Huanjun Hu, Yuxuan Ye 
    Abstract: In order to overcome the low planning efficiency of the automatic driving trajectory planning method for directional navigation, a particle swarm optimisation (PSO) based trajectory planning method is proposed. The kinematic characteristics of the vehicle are analysed and the vehicle dynamic equation is constructed. The position coordinates, speed and other motion parameters of the directional navigation vehicle are transformed into a Frenet coordinate system. The trajectory quality evaluation model of automatic driving vehicle for directional navigation is constructed. The trajectory quality evaluation index is taken as the constraint, and each variable is iteratively optimised by the PSO algorithm, so as to effectively realise the trajectory planning of automatic driving of directional navigation. Simulation results show that the proposed method can effectively improve the efficiency of autopilot trajectory planning and enhance the safety of the whole method.
    Keywords: particle swarm optimisation; directional navigation; automatic driving; path planning.

  • Moving target tracking method in intelligent transportation system based on vehicle networking environment   Order a copy of this article
    by Dong-yuan Ge, Xi-fan Yao, Wen-jiang Xiang, Ri-bo He 
    Abstract: In order to improve the anti-jamming ability of moving target tracking and to avoid noise interference, a moving object tracking method based on vehicle network environment is proposed in this paper. The method of internet of vehicles is used to collect the echo signal of moving vehicle target, and the wavelet entropy feature is selected by multi-wavelet scale feature decomposition. According to the correlation feature tracking and identifying inf, the information model of target signal detection under the environment of internet of vehicles is established. The time-frequency characteristics of target signal and the high-order statistical characteristics of signal are analysed by using discrete orthogonal wavelet transform. The adaptive ability is enhanced and the moving target tracking and recognition is realised. The simulation results show that the method has strong anti-jamming ability, improves tracking accuracy, and has good recognition and notification capabilities.
    Keywords: vehicle networking; intelligent transportation system; moving target; tracking; signal detection.

  • Research on data forwarding delay estimation of intelligent transportation system based on internet of vehicles technology   Order a copy of this article
    by Jian Gao, Daxin Tian 
    Abstract: In order to solve the problems of high error rate and long time in traditional data forwarding delay estimation methods, a data forwarding delay estimation method based on internet of vehicles technology for intelligent transportation system is proposed. Based on the Node-Link-Arc-Rord model and internet of vehicles technology, the simulation traffic network is constructed to optimise the intelligent transportation system. Based on the optimised intelligent transportation system, the average delay of the link is calculated according to the message data timestamp information, and the continuous vibration time and vibration period of the signal are estimated by using the sliding rectangular window, and the estimation results of the data forwarding delay of the intelligent transportation system are obtained. The experimental results show that the error rate of time delay estimation is less than 7%, the maximum estimated time is only 0.3 s, and the number of forward queued tasks is reduced.
    Keywords: internet of vehicles; intelligent transportation system; data forwarding; time delay estimation; simulation traffic network; sliding rectangular window.

Special Issue on: ICBCC-2019 Intelligent Transportation Systems for Smart Cities

  • Collaborative decision making system in intelligent transportation system using distributed blockchain technology   Order a copy of this article
    by Bhabendu Kumar Mohanta, Debasish Jena, Utkalika Satapathy, Somula Ramasubbareddy 
    Abstract: Intelligent Transportation System (ITS) is one of the promising applications of the Internet of Things(IoT) as the IoT system provides an easy way to collect and monitor the system. One of the critical components to make a city smart is by managing the traffic. The modes of transportation in the city are different, such as bike, car, bus, auto, and rickshaw. Most of the vehicles are integrated with Information Communication Technology (ICT). As the vehicles share and access information from the ITS infrastructure, some security issues exist, including trust management, privacy, data linking, and computational problems. This paper identifies the security issues present in the ITS model, then proposes a distributed architecture of the ITS system using blockchain. Then the Consensus algorithm is used to perform computations in a distributed platform. The Ethereum platform used to create a distributed network. The implementation and security analysis are given at the end.
    Keywords: secure decision making; blockchain; IoT; intelligent transportation system; Ethereum.