Forthcoming articles

International Journal of Reasoning-based Intelligent Systems

International Journal of Reasoning-based Intelligent Systems (IJRIS)

These articles have been peer-reviewed and accepted for publication but are pending final changes, are not yet published and may not appear here in their final order of publication until they are assigned to issues. Therefore, the content conforms to our standards but the presentation (e.g. typesetting and proof-reading) is not necessarily up to the Inderscience standard. Additionally, titles, authors, abstracts and keywords may change before publication. Articles will not be published until the final proofs are validated by their authors.

Forthcoming articles must be purchased for the purposes of research, teaching and private study only. These articles can be cited using the expression "in press". For example: Smith, J. (in press). Article Title. Journal Title.

Articles marked with this shopping trolley icon are available for purchase - click on the icon to send an email request to purchase.

Register for our alerting service, which notifies you by email when new issues are published online.

Open AccessArticles marked with this Open Access icon are freely available and openly accessible to all without any restriction except the ones stated in their respective CC licenses.
We also offer which provide timely updates of tables of contents, newly published articles and calls for papers.

International Journal of Reasoning-based Intelligent Systems (36 papers in press)

Regular Issues

  • A File Sharing System in Peer-to-Peer Network by a Nearness-Sensible Method   Order a copy of this article
    by S. Vimal, S.K. Srivatsa 
    Abstract: For a comprehensive Peer-to-Peer file sharing system dynamic file query is substantial where its performance can be enhanced by clustering of peer that can also considerably improve the efficiency. Depending upon physical nearness and peer interest peers are clustered in current work. File replication algorithm has been employed that creates replicas for the requested file to enhance the efficiency. Compared to unstructured P2P the efficiency is high for structured P2P which is difficult to analyze because of their rigid topology. We have developed Nearness and Interested Cluster (NIC) super peer network to improve the efficiency of file location in current years for P2P system but few works rely on peer interest and physical nearness. Various methods have been used to improve intra-sub-cluster searching. Here the interest is categorized into sub-interest then they are linked according to common-interest. File searching delay is minimized where an overlay is built to link. Flower filter is employed to enhance the efficiency and reduce the overhead. On comparing Nearness Sensible I-clustered System with other system the efficiency has been traced. The effect of enhancing the efficiency using intra-sub-cluster searching is observed in experimental results.
    Keywords: File Replication; Peer to Peer Networks; Flower Filter mechanism.
    DOI: 10.1504/IJRIS.2020.10023553
  • Data Mining and Economic Forecasting in DW-based Economical Decision Support System   Order a copy of this article
    by Min Zhang, Rui Qi 
    Abstract: Decision demand has hierarchies for different users and the decision analysis demand in various area and field have particularity according to different topics. Since traditional MIS is hard to meet the demand of analysis and processing of growing mass data, a novel decision support system(DSS) is urgent to be proposed for decision makers. Based on data warehouse, data mining and OLAP technology, we propose a DSS with modular design, and explain the structure and key technologies of it in this article. Our study establishes multidimensional data-set for OLAP analysis to perform slicing, dicing, drilling and rotation operation. In data mining, for the problems of large data-set such as long learning time and decreasing generalization ability, an SVM accelerating algorithm based on boundary sample selection is put forward. The system test results demonstrate that the data mining has better prediction effects on economical forecasting. Therefore, the research has better practicability and higher accuracy, which shows certain value of popularization and implementation.
    Keywords: data mining; data warehouse; DSS; OLAP; SVM; Economic forecasting.

  • Application research of improved ICA algorithm for initial population establishment based on optimisation goal in limited-buffer flexible flow shop scheduling problem   Order a copy of this article
    by Yongqing Jiang, Bin Duan 
    Abstract: To solve the limited-buffer flexible flow shop scheduling problem (LBFFSP), the LBFFSPs mathematical model is established, and an improved imperialist competitive algorithm (IICA) is proposed as the global optimising algorithm, which contains three modifications including the discretisation processing, reform operation and the elite-individual retention strategy compared with standard imperialist competitive algorithm. In order to further improve algorithms efficiency for searching the optimal solution, the initial population establishment method based on optimisation goal is designed. In addition, the individual selection mechanism on the basis of hamming distance is applied to improve the quality of initial solution in the initial population. The algorithm parameters are analysed to determine the optimum parameter values by designing the simulation experiments. Finally, the effectiveness of the improved imperialist competitive algorithm (IICA) in solving the limited-buffer flexible flow shop scheduling problems is verified in comparison with other algorithms through example test.
    Keywords: limited-buffer; improved imperialist competitive algorithm; IICA; initial population establishment; hamming distance.

  • Optimizing the Mining Strategy of Web Page Based on Ant Colony Algorithm of Information Entropy   Order a copy of this article
    by Meiwen Guo, Jianping Peng, Yuanping Zhang, Junxiong Zhao, Liang Wu 
    Abstract: The speed and quality for browsers to obtain page information are determined by the accuracy degree of web page information filtering. This research improved ant colony algorithm, introducing the information entropy with the ability to judge the probability of occurrence of information and adjusting its operation order. The study uses Sina homepage information from January 2017 to August as a sample, Four indexes are used to evaluate the improved algorithm, which are maximum iterations, average execution time, average error rate and error percentage. It is found that the four indexes of improved algorithm has better effect on the precision of information mining than before, and the cost of this method has not increased significantly. This algorithm is used to provide web page information layout as well as information placement strategies, so as to help website operators and web page designers to further enhance the design and operation efficiency.
    Keywords: Data Mining,Ant Colony Algorithm,Information Entropy.

  • Island-based whale optimization algorithm for continuous optimization problems   Order a copy of this article
    by Bilal Abed-alguni, Ahmad Klaib, Khalid Nahar 
    Abstract: The whale optimization algorithm (WOA) is a newly proposed evolutionaryrnalgorithm that uses a simulation model based on the bubble-net hunting mechanism of humpback whales to find solutions for different classes of optimization problems. WOA may occasionally converge to suboptimal solutions because of the loss of diversity in its population of candidate solutions. The island model is a distributed approach that is commonly used to control the population diversity in evolutionary algorithms. This paper introduces an improved version of WOA namely island-based whale optimization algorithm (iWOA) that incorporates the island model into WOA. In iWOA, the populationrnof candidate solutions is divided into separate sub-populations called islands. The improvement loop of WOA is then applied separately to the candidate solutions in each island. After a predetermined number of generations, a number of candidate solutions are swapped between islands through a process known as migration that is based on the random ring topology. The migration process is conducted to maintain the diversityrnof population and also to allow each island to exchange candidate solutions with a selected neighbouring island. The iWOA algorithm was tested and compared to well-known optimization algorithms using 18 standard benchmark functions. The simulation results indicate that iWOA improves the accuracy of results compared to WOA and other popular evolutionary algorithms.
    Keywords: Whale Optimization; Island model; Structured population; Optimization; Evolutionary algorithm.

  • Automatic absence seizure detection and early detection system using CRNN-SVM   Order a copy of this article
    by Niha Kamal Basha, Aisha Banu Wahab 
    Abstract: In this paper the new model is proposed to automatically detect and predict absence seizure using hybrid deep learning algorithm [convolutional recurrent neural network (CRNN)] with single channel electroencephalography (EEG) only as input. This model comprises of four steps: 1) single channel segmentation process; 2) extraction of relevant features using convolution network; 3) recurrent network for detection and early detection; 4) SVM have been used as last layer to obtain a result with respect to time. This model enhances the feature extraction by feeding the raw input into convolutional layer, improves the detection with gated recurrent unit (GRU) and reduces the early detection rate with support vector machine (SVM). Our proposed model achieves 100% overall accuracy on seizure detection as normal and absence seizure and detect within three seconds of the overall seizure duration. Also this model can be act as a generic model for classification task with detection and early detection of bio-signal (EEG, ECG and EMG).
    Keywords: absence seizure; convolutional recurrent neural network; RNN; electroencephalography; gated recurrent unit; GRU; normal and ictal subject; rhythmic frequency; seizure detection; early detection; sampling rate; support vector machine; SVM; statistical features.

  • A New Reasoning-based Approach for Measuring the Magnetic Field Emitted by Portable Computers   Order a copy of this article
    by Alessia Amelio, Ivo Draganov 
    Abstract: This paper explores a new reasoning-based approach for measuring the extremely low frequency magnetic field emitted by a portable computer. The introduced approach and the widely accepted TCO standard are compared each other. This comparison shows that the well-known magnetic field measurement TCO standard has important limitations and disadvantages. In fact, the new reasoning-based approach obtains measurement results of the extremely low frequency magnetic field which are closer to the working conditions of the portable computers' users. Accordingly, the introduced measurement methodology is more user-centric and should be employed in a future standardization.
    Keywords: magnetic field; measurement; methodology; self-organizing-map; artificial intelligence; pattern recognition; portable computers; standardization; magnetic field; TCO standard.

  • Two-Stage Portfolio Risk Optimization Based on MVO Model   Order a copy of this article
    by Vassil Guliashki, Krassimira Stoyanova 
    Abstract: This paper presents a two-stage portfolio risk optimization based on Markowitzs mean variance optimization (MVO) model. Historical return data for six asset classes are used to calculate the optimal proportions of assets, included in a portfolio, so that the expected return of each asset is no less than in advance given target value. At the first stage optimization procedure is performed, in order to select a limited number of assets among a large assets sample. At the second stage the optimal proportions of selected assets in the portfolio are calculated, minimizing a risk objective function for a given rate of return. Ten optimization problems are solved for different expected rate of return. The optimization is performed by two MATLAB solvers. Finally some conclusions are drawn.
    Keywords: Portfolio optimization; mean variance optimization model; MATLAB.

  • Multimedia-Aided English Online Translation Platform based on Bayesian Theorem   Order a copy of this article
    by Xinfei Wang 
    Abstract: In order to overcome the problems of the traditional online English translation platform, such as low translation efficiency, poor translation accuracy and small translation database capacity, a multimedia aided online English translation platform based on bayesian theorem is designed. The translation platform consists of display layer, permission control layer, logic control layer and data processing layer. This paper introduces bayes' theorem and calculates the probability of translation from English to Chinese. In the design of query module, the translation of search words and thesaurus is selected based on bayes' theorem, and the retrieval method is optimized. Sqlite management system is used to manage the vocabulary data in the vocabulary, so as to complete the design of multimedia assisted English online translation platform. Experimental results show that the translation accuracy of the platform designed in this paper fluctuates in the range of 86-95, and the translation time is always lower than 0.4s, indicating that the platform not only has high translation efficiency and accuracy, but also can complete the translation of large volume data.
    Keywords: machine vision technology; multimedia; English; translation platform; platform construction;.

Special Issue on: CIM-19 Advances in Machine Learning and Intelligent Systems - Challenges and Solutions

  • Demographical Gender Prediction of Twitter Users using Big Data Analytics: An Application of Decision Marketing   Order a copy of this article
    by Sudipta Roy, Bhavya Patel, Debnath Bhattacharyya, Kushal Dhayal, Tai-Hoon Kim, Mamta Mittal 
    Abstract: The use and influence of digital media, particularly social media, have grown in every sphere of life. One of the trendiest social sites is Twitter. Twitter often contains conversation in non-standard language, and thus, it is difficult to analyze in real-time using conventional language processing. Twitter does not accumulate user gender information as do other popular social media platforms. Thus, demographic feature prediction and additional informative content are important for advertising, custom-made marketing and authorized investigation from the social medium. In this study, proposed statistical representation with real-time analysis using big-data technologies is able to predict the gender of Twitter users. Data cleaning, processing, and storage are performed by the big-data technology Apache Hive. Gender prediction is performed using the naive Bayes classifier to address systemic issues, and Apache Hive is used to solve data storage and big-data processing issues. Authors have considered the tweets-only scenario, the other scenario that was used predicts gender by combining the user tweets and the user profile description. To maintain the stability of the amount of training instances used per estimation, we initiate a balanced class formulation using the polynomial Naive Bayes. Another systemic and previously existing problem of features that was assumed to be independent is solved by the proposed method. The proposed customized method is a speedy, easy-to-implement with pre-processing, close to state-of-the-art document text categorization method using big-data technologies. The proposed statistical method produces higher accuracy in gender classification using tweets only and tweets with description compared with other gold-standard methods.
    Keywords: Twitter; Naïve Bayes; Gender Classification; Apache Hive; Perceptron; Logistic Regression;.

  • Energy Efficient Task Scheduling using Adaptive PSO for Cloud Computing   Order a copy of this article
    by Rama Rani, Ritu Garg 
    Abstract: Cloud computing is an important research domain where all computational resources are networked globally and shared to users easily. The cloud service provider (CSP) wants an eco-friendly solution to resolve these issues. To enhance the performance of cloud computing resources, task scheduling is of prime concern. Further, the growth of cloud computing resources leads to a large amount of energy consumption and carbon footprints. Thus, this paper aims to reduce the makespan along with energy consumption for independent tasks. For this purpose, we proposed energy-efficient adaptive particle swarm optimization (EE-APSO) algorithm for independent tasks scheduling decision. Each particle represents a potential solution, and small position value (SPV) rule is used to change the continuous particle position vector to a discrete particle position vector. PSO is made adaptive by varying acceleration coefficients and inertia weight. We also introduced mutation operation to avoid the PSO algorithm getting stuck in local minima and explore the whole search space efficiently. Result analysis demonstrated that our proposed algorithm EE-APSO using SPV rule gives better results than min-min, max-min and genetic algorithm (GA) in terms of makespan and energy consumption.
    Keywords: Cloud Computing; Independent task scheduling; Particle Swarm Optimization; Energy Consumption; Makespan.

Special Issue on: ICCD-2018 Human-Computer Interaction

  • Generalized Linear Orthomorphisms   Order a copy of this article
    by Haiqing HAN, Siru Zhu, Yanqing Dai, Qili MAO, Qin Li, Kang SHI 
    Abstract: In this scientific research paper, the authors have generalized the concept with regard to orthomorphic permutations(called orthomorphisms) over the Galois field. Meanwhile we have gain the enumeration formula of the total generalised linear orthomorphic permutations over the Galois field, which possesses an arbitrary prime number as the characteristic of the prime subfield. So, the local creating algorithm with regard to partial generalised linear orthomorphic permutations over the Galois general fieldis realized. Comparatively speaking, the innovativeness and originality enumeration formula with regard to linear orthomorphisms over a Galois field with characteristic 2 is a special case to contain in our novel fruits over the general field. What is more, the generalised linear orthomorphic permutations have been thoroughly discussed and generated far
    Keywords: P-permutation; Block Cipher; the Branch Number; Generalized Linear Orthomorphism.

  • Multi-Agent-Based Distributed Text Information Filtering Method   Order a copy of this article
    by Wuxue Jiang 
    Abstract: In order to improve the filtration efficiency and precision, and reduce the occupation of network resources in distributed text information filtering system, a kind of Multi-Agent-based text filtering method was designed. Directed by multi-Agent theory and technology, the system structure and working mechanism of distributed text information filtering are presented, which makes detailed design for scheduling responding agent and learning agent. The load balance was implemented by dynamic range adaptive load migration (DRALM). The experiment shows that this filtering method, boasting higher filtering performance, not only has higher filter precision, but processes tasks in many machines effectively balancing computing load.
    Keywords: Multi-Agent System; Text Information Filtering; Distributed System; Open Computing Model; Dynamic Range Adaptive Strategy; Daemon.

  • Modified Jaya algorithm with chaos   Order a copy of this article
    by Mingjing Pei, Shuhao Yu, Maosheng Fu, Xukun Zuo 
    Abstract: Jaya algorithm is a recently developed optimization algorithm, which is a new optimization algorithm designed to solve optimization related problems, it has two random parameters in equations. In the study of this paper, we will introduce chaos into Jaya so as to increase non-repeatability and ergodicity for global optimization. Here, four different chaotic maps are utilized to control random parameters in Jaya. The results show that some chaotic maps can outperform the random parameters in the high dimensional function and the result of the two-dimensional function is almost the same.
    Keywords: Jaya algorithm; Chaos; Global optimization.

Special Issue on: ICCD-2018 Human-Computer Interaction

  • Hedging Strategy for Commodity Futures Based on SVM-KNN
    by Mei Sun, Rongpu Chen, Yulian Wen, Peiyao Nie 
    Abstract: In view of the problem of excessive exposure in the field of quantitative investment in commodity futures and policy failure in the low volatility market environment, a new quantitative investment strategy using SVM-KNN combined classifier to hedge multi-factor futures is proposed and applied to the management of quantitative fund. The quantitative investment strategy can not only reduce the overall systemic risk of the investment portfolio, but also adapt to the long-term environment of the commodity futures market. The retest data and the results of real trading show that the SVM-KNN based hedging strategy of commodity futures is significantly higher than the traditional CTA trend tracking strategy in the annual rate of return and the SHARP ratio, and the retracting of the cross period is greatly reduced.
    Keywords: Quantitative Investment; Commodity Futures; Multifactor Hedging; Support Vector rn Machine; K-nearest Neighbors

Special Issue on: ICICT2019 Emerging Technologies for the Internet of Things

  • Estimating Equations under IPW Imputation of Missing Data   Order a copy of this article
    by Hao WU, CuiCui LI, Chen Cheng 
    Abstract: The IPW imputation method is first applied t to compensate for nonresponse. And then, the empirical likelihood (EL) inference is made for estimation equation parameters. It is a nice result obtained in this paper that the limiting distributions of the EL statistics are 2-type distributions under the IPW imputation. Compared with the usual methods, the proposed method is easier to complement and more efficient.
    Keywords: Empirical likelihood; equation estimation; missing data imputation; IPW (inverse probability weighted).

Special Issue on: EDIS'2017 Modelling as a Service for Designing and Analysing QoS-Oriented Information, Data and Knowledge Systems

  • Mobile agent and ontology approach for web service discovery using QoS   Order a copy of this article
    by Nadia Ben Seghier, Okba Kazar 
    Abstract: Web services are meaningful only if potential users may find and execute them. Universal Description Discovery and Integration (UDDI) help businesses, organizations, and other Web Services providers to discover and reach to the service(s) by providing the URI of the WSDL file. However, it does not offer a mechanism to choose a Web service based on its quality. The standard also lacks of sufficient semantic description in the content of Web services, this lack makes it difficult to find and compose suitable Web services during analysis, search, and matching processes. In addition, a central UDDI suffers from one centralized point problem and the high cost of maintenance. To get around these problems, the authors propose in this paper a novel framework based on mobile agent and metadata catalogue for Web services discovery. Their approach is based on user profile in order to discover appropriate Web services, meeting customer requirements, in less time and taking into account the QoS properties.
    Keywords: semantic Web service; ontology; matchmaking; metadata catalogue; mobile agent; distributed architecture; user profile representation; customer satisfaction; service quality.
    DOI: 10.1504/IJRIS.2019.10023645
  • SCOL: Similarity and Credibility-based Approach for Opinion Leaders Detection in Collaborative Filtering-based Recommender Systems   Order a copy of this article
    by Nassira CHEKKAI, Ilys Chorfi, Souham Meshoul, Badreddine Chekkai, Didier Schwab, Mohamed Belaoued, Amel Ziani 
    Abstract: Recommender Systems (RS) have recently gained significant attention from both research and industrial communities. These systems generate the recommendations of items in one of two ways, namely collaborative or content-based filtering. Collaborative Filtering is a technique used by recommender systems in order to suggest to the user a set of items based on the opinions of other users who share with him the same preferences. One of the key issues in collaborative filtering systems (CFS) is how to generate adequate recommendations for newcomers who rate only a small number of items, a problem known as cold-start user. Another interesting problem is the cold start item when a new item is introduced in the system and cannot be recommended. In this paper, we present a clustering-based approach SCOL that aims to alleviate the cold start challenges; by identifying the most effective opinion leaders among the social network of the CFS. SCOL clustering focuses on the credibility and correlation similarity concepts.
    Keywords: Collaborative Filtering; Recommender Systems; Cold Start Problem; Social Network; Graph Theory; Credibility; Correlation Similarity.

  • Measurement-based Methodology for Modeling the Energy Consumption of Mobile Devices   Order a copy of this article
    by Khalil Ibrahim Hamzaoui, Khalil Ibrahim Hamzaoui, Mohamed Berrajaa, Mohamed Berrajaa, Mostafa Azizi, Mostafa Azizi, Giuseppe Lipari, Giuseppe Lipari, Pierre Boulet, Pierre Boulet 
    Abstract: Energy consumption is the result of interactions between hardware, software, users, and the application environment. Optimization of energy consumption has become crucial, the energy metric is considered a critical metric, so it is important to know how to measure and understand how energy is consumed on mobile devices. Accurate knowledge will allow us to propose different solutions to reduce energy consumption in order to improve the user experience. In this paper we propose an experimental methodology to build a model of the energy consumption of an application. We show in this paper how to build a simple predictive model of the energy consumption of an unconnected application, and a predictive model of a connected application based on precise measurements.
    Keywords: Mobile computing; Operating system; Energy consumption modeling.

Special Issue on: ICCD-2017 Internet of Things, Big Data and Machine Learning

  • Evaluation Research on Green Degree of Equipment Manufacturing Industry Based on Improved Particle Swarm Optimization Algorithm   Order a copy of this article
    by Zhang Li 
    Abstract: In order to improve the sustainable development of equipment manufacturing industry, the improved particle swarm algorithm is applied in evaluating green degree of equipment manufacturing industry. Firstly, the green degree evaluation system of equipment manufacturing industry is constructed, and evaluation index system is established. Secondly, the basic theory of particle swarm algorithm and the improved particle swarm algorithm are studied basing on analysis of disadvantages of traditional particle swarm algorithm. Thirdly, the analysis procedure of improved particle swarm algorithm is designed. Finally, equipment manufacturing industry in a province is used as a researching object, the green degree evaluation of equipment manufacturing industry in this province is carried out, and results show that this algorithm can improve evaluation level of green degree of equipment manufacturing industry.
    Keywords: green degree; equipment manufacturing industry; improved particle swarm algorithm.
    DOI: 10.1504/IJRIS.2020.10023267
  • Network Security Situation Detection of Internet of Things for Smart City Based on Fuzzy Neural Network   Order a copy of this article
    by Qing Liu, Ming ZENG 
    Abstract: in order to ensure the safety of Internet of things for smart city and ensure normal operation of smart city, the network security situation of Internet of things should be monitored correctly for a long time, therefore the fuzzy neutral network with wavelet package and chaos particle swarm algorithm is applied it. Firstly, the basic theory of network security situation of Internet of things for smart city is analyzed, the corresponding mathematical is constructed, and the security situation awareness framework of Internet of things is designed. Secondly, the basic theory of fuzzy neutral network is studied, and the structure of the fuzzy neutral network is designed. Thirdly, the processing method of network security situation data based on wavelet package is constructed. And then training procedure of fuzzy neutral network based on chaos particle swarm algorithm is established, the algorithm procedure is designed. Finally, the simulation analysis is carried out using a smart city as example, and the network security situation of Internet of things for it is monitored correctly, then the network safety can be ensured.
    Keywords: fuzzy neutral network; smart city; Internet of things; network security.

Special Issue on: ICEST'18 Intelligent Sensor Data Processing, Mobile Telecommunications and Air Traffic Control

  • Application Level Extension of Bandwidth Management in Radio Access Network   Order a copy of this article
    by Evelina Pencheva, Ivaylo Atanasov 
    Abstract: Multi-access Edge Computing (MEC) provides processing and storage capabilities of the cloud into the radio access network. In this paper, we study the deployment of bandwidth management service in MEC environment. The bandwidth management service procedures are mapped onto functionality of the control protocol between radio access network and core network. An extension of the bandwidth management service is proposed that enables detecting of packets generated of specific applications and applying the appropriate enforcement actions. The proposed extension is described by typical use cases, information flows, required information, data model, as well as respective application programming interfaces. Models representing the status of bandwidth allocation as seen by the mobile edge application and network are proposed, formally described and verified. Formal model verification enables mathematical demonstration that the proposed extension is consistently implementable.
    Keywords: Quality of service control; Bandwidth management; Application detection and control; Radio access network; Multi-access Edge Computing; Application Programming Interfaces; Data model; Finite state machines.

  • Flight Safety Sensor and Auto-Landing System of Unmanned Aerial System   Order a copy of this article
    by Krume Andreev, Georgi Stanchev 
    Abstract: Over the past decade, there has been a rapid development of Unmanned Aerial Systems (UAS). The trend and current developments lead to an increase in the use of UAS. The operations of UAS and their use significantly increase every day. This article provides solutions and options for introducing a flight safety sensor system and auto-landing system for UAS. The reason is to ensure effective completion of their mission without the involvement of a qualified operator (pilot) in the control station. The problems and characteristics of these systems and the algorithms through which they successfully perform their tasks are analyzed in the article. In the article has been proposed an architectural realization of a flight safety sensor system and an auto- landing system for UAS.
    Keywords: Flight Safety; Sensor System; Technical Condition; Auto-Landing System; Unmanned Aerial System; Conical Scanning; Pseudo-Conical Scanning.

  • Performance of VWM algorithm in the presence of impulse noise and resizing   Order a copy of this article
    by Bojan Prlincevic, Zoran Milivojevic, Stefan Panic 
    Abstract: The first part of this paper describes VWM (Visible Watermarking) algorithm for inserting and removing visible watermark in the image. The second part of this paper describes an experiment in which the image is watermarked with the VWM algorithm,impulse noise is added, and the image quality is improved with the MDB algorithm for filtering. Watermark is removed from noised andfiltered image. Afterwards, an experiment is described in which resizing of the noised watermarked image is performed. Watermark is removed from this image. Finally, a comparative analysis of the results is performed in order to evaluate the efficiency of the applied algorithms. The comparison was performed on the basis of MSE and Similarity. The obtained results are analysed in detail and presented in a tabular and graphical manner.
    Keywords: Visible watermark; Impulsive noise; Filtering; Resizing;.

  • Design and optimization of bio-inspired robotic stochastic search strategy   Order a copy of this article
    by Farhad Maroofkhani 
    Abstract: An autonomous robots search strategy is the set of rules that it employs while looking for targets in its environment. Biological systems (e.g., foraging animals) provide useful inspirations for designing optimal stochastic search algorithms for autonomous robots. Due to the complexity of interaction between the robot and its environment, optimization must performed in high-dimensional parameter space. We analyze the dependence of search efficiency on environmental parameters and robot characteristics using Response Surface Methodology (RSM), a technique originally developed for experimental design. In this study, the efficiency of a strategy focuses on L
    Keywords: Levy walk; Autonomous robots; Swarm robot; Biomimetic; Individual motion; Design of experiments.

  • Influence of optimal pair-wise SUS algorithm on MU-MIMO-OFDM system performance   Order a copy of this article
    by Aleksandra Panajotovic, Nikola Sekulovic, Daniela Milovic 
    Abstract: In this paper we proposed a new user scheduling algorithm, named as optimal pair-wise semi-orthogonal user selection (SUS), for multiuser multiple-input multiple-output orthogonal frequency division multiplexing (MU-MIMO-OFDM) system. Multiuser interferences are canceled applying zero-forcing beamforming (ZFBF) technique with presumption that channel state is perfectly known at transmit side. Simulated throughput and error results demonstrate advantage gain achieved in system performance realized through applying the proposed scheduling algorithm.
    Keywords: FLA; IEEE 802.11ac; MU-MIMO-OFDM; User Scheduling Algorithm; ZFBF.

  • The effect of background and outlier subtraction on the structural entropy of two-dimensional measured data   Order a copy of this article
    by Szilvia Nagy, Brigitta Sziova, Levente Solecki 
    Abstract: For colonoscopy images the main information is in the fine structure of the surface of the bowel or colorectal polyps, similarly to the case of combustion engine cylinder surface scans, where the grooving and wear can be detected from the fine pattern superposed to a cylinder curvature. In both cases appear outliers, colonoscopy images have many reflections, whereas the roughness scanners detect small dust particles as well as the micron scale vibrations from the environment. The method presented in this paper takes care of both the problems using histogram stretching together with a special type of filtering. Also, masks are introduced in order to control the effect of the operators. The effects of the processing steps on the structural entropy of the image is also studied, as structural entropies are used in characterization of the images. By removing the background makes the structural entropies much smaller, and by suppressing the outliers the structural entropies increase.
    Keywords: Image preprocessing; Rényi entropy; structural entropy; colonoscopy; microgeometrical surface.

  • A Fuzzy Decision Maker to Determine Optimal Starting Time of Shiftable Loads in the Smart Grids   Order a copy of this article
    by İsmail Hakkı Altaş, Recep Çakmak 
    Abstract: Smart grid studies have been increased tremendously for past ten years in order to modernize and solve problems of current electrical grids. One of the aim of the smart grids is to react autonomously to the problems in electrical networks by means of artificial intelligence and decision maker. Fuzzy logic based embedded control systems simulate human thoughts and decision making processes. So, fuzzy logic and fuzzy decision makers can be utilized in smart grids for automated system management. In this paper, a fuzzy decision maker has been proposed to manage time-shiftable loads in residences. The proposed fuzzy decision maker determines optimal starting time of time-shiftable loads in residential areas in order to provide balanced power curve and decrease peak load consumptions by scheduling the loads. Design stage of the proposed fuzzy decision maker have been introduced and presented clearly. Finally, a design example has been given to show the decision results.
    Keywords: Fuzzy Logic; Fuzzy Decision Maker; Demand Side Management; Load Scheduling; Smart Grids.

Special Issue on: ICICT2018 Advances in Intelligent Information Communication Technologies

  • Onboard Reasoning and Other Applications of the Logic-Based Approach to the Moving Objects Intelligent Control   Order a copy of this article
    by Andrey Tyugashev 
    Abstract: This article provides the theoretical background and practical case studies of the application of reasoning and other logic-based approaches to the moving objects control. Modern moving objects, both manned and unmanned, utilize computers as their onboard brain. Since planes, spacecraft, cars, trucks and trains must demonstrate flexible and safe behavior in various situations, it seems prospective to use intelligent control means instead of rigid control logic dispersed in a program source code. This article is concerned with the possible implementation of onboard intelligence. In contrast to the popular use of neural networks, the logic-based approach is based on clear and exact control rules with strict responsibility. Thus, formal specification and verification methods can be utilized. The article describes the Real-Time Control Algorithm Logic (RTCAL) for the above-mentioned purposes. We also present case studies of reasoning at the design and operation stages for providing the fault tolerant control of a spacecraft.
    Keywords: Moving objects control; logic; intelligent control; reasoning; Real-Time Control Algorithm; flight control software.

  • Multi-Criteria Clustering-based Recommendation using Mahalanobis distance   Order a copy of this article
    by Mohammed Wasid, Rashid Ali 
    Abstract: There have been significant advances made in the research of recommender systems over the past decades and have been implemented in both industry and academia. Recently, multi-criteria ratings are being incorporated into traditional recommender systems to further improve their quality, especially to handle the data sparsity and cold start issues. However, incorporation of multi-criteria ratings have improved the performance of the recommendation, but at the same time, multidimensionality issue is also arises. This paper presents a clustering based recommendation approach which is used for dealing with the multi-dimensionality issue in multi-criteria recommender systems. Here, we cluster the users based on their individual criteria ratings using K-means cluster-ing and the intra-cluster similarity is computed using Mahalanobis distance measure for neighborhood set gen-eration. This improves the recommendations quality and predictive accuracy of both traditional and clustering-based collaborative recommendations. The Yahoo! Movies dataset was used for testing the approach and the experiment conducted shows promising results.
    Keywords: Recommender systems; RS; Collaborative filtering; CF; Mahalanobis distance; MD; K-Means clustering; Multi-criteria.

  • Fast Algorithm of Image Enhancement based on Multi-Scale Retinex   Order a copy of this article
    by Alexander Zotin 
    Abstract: In this paper, a fast image enhancement algorithm based on Multi-Scale Retinex in HSV color model is presented. The proposed algorithm produces the result similar to the one which uses a nonlinear processing in the HSV color model, but with less computational cost. It uses linear dependencies of RGB colors from the V-component of HSV model. Additionally, to speed up the images processing and enhance the local contrast is suggested to perform Multi-Scale Retinex (MSR) computation only in the low-frequency area obtained by the wavelet transform. Experimental research was performed on more than 100 color images having non-uniform brightness. Different algorithms based on Retinex technology were implemented and their performance was compared. The proposed way of output image color formation allows to reduce processing time by 30-75%, depending on the image size. The experimental data show that the usage of the wavelet transform in proposed MSR algorithm additionally leads to 2-2.8 times increase in processing speed.
    Keywords: Color image enhancement; Retinex; MSR; Multi-Scale Retinex; Color space; HSV; Wavelet transform;.

  • Exchanging Deep knowledge for fault diagnosis using ontologies   Order a copy of this article
    by Xilang Tang, Mingqing Xiao, Bin Hu, Dongqing Pan 
    Abstract: To improve the development efficiency of automated diagnosis equipment (ADE) and ensure the generality of ADE software, this paper proposes a novel method to exchange deep knowledge of systems under diagnosis (SUD) using ontologies. A general framework of knowledge base combining test information model and diagnosis information model is proposed. The diagnosis information model is decomposed into structure model and function model. The structure model describes the connectivity of adjacent components as well as the structural hierarchy, and the function model describes behavior of modules by mapping input signals into output signals. Moreover, the method to locate the fault based on the proposed knowledge base is introduced. Finally, a case study for guiding system of passive-radar guidance missile is carried out to illustrate our proposed method. The practice shows that our method can achieve the object well
    Keywords: fault diagnosis; test; knowledge; ontology; reasoning.

  • Multistage approach for automatic spleen segmentation in MRI sequences   Order a copy of this article
    by Antonia Mihaylova, Veska Georgieva, Plamen Petrov 
    Abstract: Most of the known methods of segmentation of the abdominal organs are not automated for the whole series of images or are semi-automatic and require additional intervention by the user. This is typical for cases where the difference in intensity of the gray level between the subject and the background is small. A typical example of this is the spleen and adjacent tissue in unconstrained MR images. This paper presents a multistage approach for spleen segmentation from MRI-sequences. It is based on segmentation methods such as active contours without edges and k-mean clustering. The proposed approach consists of some basic stages. The first stage is pre-processing, based on image enhancement and morphological operation. Two atlas models are created, which are used in the initial image to define the initial contour at which the segmentation begins. The initial image is semi-automatic segmented using the created atlas models. The sequence is then automatic segmented, dividing it in two parts (before and after the initial middle image) and using the segmentation of the previous image. The proposed approach allows extracting the spleen in the different depth images, which has a variable form and unstable position. The conducted experiments are showing the robustness of the proposed approach. The obtained results demonstrate the effectiveness of the approach for application in screening diagnostics.
    Keywords: Segmentation of Spleen; Segmentation of MRI sequences; Automatic Segmentation.

  • Classification of Radar Non-Homogenous Clutter Based on Statistical Features Using Neural Network   Order a copy of this article
    by Thamir Saeed, Ghufran Hatem, Jafar Abdul Sadah 
    Abstract: This paper presents a robust clutter classifier based on the neural network to assist the radar receiver by choosing optimal constant false alarm rate. Where this classifier has been trained for sixteen class, four radar return distribution with different situations. The return radar signal distributions are Rayleigh, Weibull, lognormal and K- distribution, while the situations are, Signal, Multi-, Closed Multi-target, and clutter edge. Multi-layer perceptron with back-propagation as a neural network with seven features, Mean, Variance, Mode, Kurtosis, Skewness, Median, and Entropy, have been used to classify the return signal. A Least mean square error is used to evaluate the classifier performance. The simulation is evaluated for the Signal to clutter ration from +35dB to -35 dB, with 5-20 neurons of the hidden layer, and 60-360 samples. By performing, the Optimization has been gained by using 240 samples and 20 neurons then lead to 98.1 % return signal classification
    Keywords: Clutter Classifier; CFAR; Radar; and Non-homogenous clutter; statistical Features.

  • Development of a sit-to-stand assistance chair for elderly people   Order a copy of this article
    by Ari Aharari, Won-Seok Yang 
    Abstract: According to the survey on the actual situation of elderly persons at home or nursing home care, the first item after concerning about disease under treatment is Weak legs and difficulties to stand from the chair. Muscle strength further decreases with aging and make feeling burden when standing from chair. Also, people who are suffering from secondary symptoms such as bedsores and keep sitting in a chair for a long time are on the rise. The most burdensome for elderly persons when trying to stand up from the chair is to bear the weight themselves. In this paper, we introduce Rakutateru which is specially designed to support elderly persons to easily stand up from the chair and keep people to more active and independent. We also evaluate the validity of an assist unit which is contained inside the lower part of the Rakutateru surface.
    Keywords: Assist chair; Elderly support chair; Lifting unit.

Special Issue on: EDIS'2017 Modeling as a Service for Designing and Analyzing QoS-Oriented Information, Data and Knowledge Systems

  • Machine Learning Methods Against False Data Injection In Smart Grid   Order a copy of this article
    Abstract: The false data injection in the power grid is a major risk for a good and safety functioning of the smart grid. The False data detection with conventional methods are incapable to detect some false measurements, to remedy this, we have opted to use machine learning which we used Five classifiers to conceive an effective detection (k-nearest neighbor algorithm "KNN", Random trees, Random forest decision trees, multi-layer perceptron and vector support machine). Our analyze are validated by experiments on a physical bus feeding system performed on PSS / in which we have developed a data set for real measurement. Afterward we worked with Matlab software to construct false measurements according to the Jacobean matrix of the state estimation. We tested the collected data with different classification algorithms, which gives good and satisfactory results.
    Keywords: smart grid; state estimation; false data injection; machine learning.