Forthcoming articles

International Journal of Rapid Manufacturing

International Journal of Rapid Manufacturing (IJRapidM)

These articles have been peer-reviewed and accepted for publication but are pending final changes, are not yet published and may not appear here in their final order of publication until they are assigned to issues. Therefore, the content conforms to our standards but the presentation (e.g. typesetting and proof-reading) is not necessarily up to the Inderscience standard. Additionally, titles, authors, abstracts and keywords may change before publication. Articles will not be published until the final proofs are validated by their authors.

Forthcoming articles must be purchased for the purposes of research, teaching and private study only. These articles can be cited using the expression "in press". For example: Smith, J. (in press). Article Title. Journal Title.

Articles marked with this shopping trolley icon are available for purchase - click on the icon to send an email request to purchase.

Register for our alerting service, which notifies you by email when new issues are published online.

Open AccessArticles marked with this Open Access icon are freely available and openly accessible to all without any restriction except the ones stated in their respective CC licenses.
We also offer which provide timely updates of tables of contents, newly published articles and calls for papers.

International Journal of Rapid Manufacturing (20 papers in press)

Regular Issues

    Abstract: In this paper researched the Metal Matrix composites (MMCS) by blend throwing procedure and distinguished the disfigurement quality of the material. This system used to produce good strength of the aluminum 6061 with fortified with SiC, TiO2 and magnesium (Mg).The weariness execution exceptionally hard to comprehend for the new composite materials. That approach to describe the new composites utilizing Scanning Electron Microscope (SEM) and malleable ductile weariness test has analyzed. The hybrid composites are increased the strength for a contribution of reinforced particles. The fatigue behaviour of developed composites has analyzed at the room temperature for the low cycle fatigue. The fatigue cyclic loading conditions obtained the better yielded strength of the new hybrid composites. The working conditions pursued by the low cycle weariness recurrence level 1 to 25 HZ and also of HCF. The diminishing existence of the metal framework in view of the LCF strain sufficiency for the room and hoisted temperature 3000 C and R= (εmin/εmax) =0. The experiments deliberate with continuous amplitude for a prearranged strain of amplitude. The disfigured assessment of weariness standard and thoroughly considered the mean pressure an incentive as far as weakness life acquired in the test results. Although forecast the fatigue life based on the experiments conducting this observed the fact of plastic energy and elastic energy.
    Keywords: Fatigue life; Metal Matrix Composites; Aluminium Reinforcement.

    Abstract: In this present investigation, wear studies on uncoated Ti-6Al-4V alloy and HVOF coated alloy was studied. For improving the wear resistance of titanium alloy, ceramic coating is performed on the surface. Ti-6Al-4V alloys with SiC ceramic coating have significant attention due to improved tribological properties without affecting the corrosion and wear resistance of the alloy. Characterization of uncoated and coated surface was also made by means of micro hardness test and tensile test. Dry sliding wear behavior is studied with the help of pin-on-disc apparatus. The experiments were designed by using Taguchis design of experiment (DoE); an L16 (4^4) orthogonal array is selected for four parameters varied through four levels. The experimental work depicts the influence of control factors such as load, speed, distance and track diameter on the dry sliding wear behavior of uncoated and SiC coated Ti-6Al-4V alloy. For evaluating the measured output responses, grey relational analysis is applied for performing multi-objective optimization. From experimental results; wear loss decreased by 35.71% due to SiC thermal spray coating compared to uncoated material. Application of statistical tool, analysis of variance (ANOVA) for grey relational grade suggests that, among all four parameters speed contributes by 54% on SiC coated, and track diameter contributes by 42.97% on uncoated Ti-6Al-4V alloy, towards responses and are the most influencing factor on the wear loss of the tested specimen. Confirmation experiment performed with optimum conditions provides lower wear loss. To investigate the wear surfaces SEM micrographs and EDS analysis is carried out.
    Keywords: Ti-6Al-4V alloy; HVOF; Pin-On-Disk; Taguchi’s DoE; Grey Relational Analysis; ANOVA.

  • Experimental investigation and Fuzzy logic modeling of CO2 laser cutting parameter for AA 6061-T6 sheet   Order a copy of this article
    by Parthiban Alagesan, Sathish Shan, Ravikumar Rangasamy, Prakash Pons 
    Abstract: The laser machining is thermal energy based process. The aluminium alloy is highly reflective material to difficult to cut by using laser cutting process. The present paper are experimentally investigated about the CO2 laser cutting of Aluminium AA 6061-T6 alloy material with to improvement of geometrical accuracy of the curved profile at the same time to minimize the top, bottom kerf width and kerf deviations. The experiments carried out by using fuzzy logic approach and to predict the effect of CO2 laser cutting quality based on the cutting parameters on laser power, Cutting speed, Gas Pressure and focal position. The fuzzy logic model is used on Fuzzy logic tool box of MATLAB using Mamdani technique. The relationship between experimental value and fuzzy model are compared. Finally based on the results the proposed fuzzy logic models are minimized Top, Bottom kerf width and Kerf deviations of CO2 laser cutting of AA6061-T6 aluminium alloys.
    Keywords: Fuzzy Logic; CO2 Laser Cutting; AA6061-T6; Kerf Width.

  • Investigation on Corner Accuracy in Wire Cut EDM of AISI D3 tool steel   Order a copy of this article
    by G. Selvakumar, V. Balasubramanian, N. Lenin 
    Abstract: Wire cut Electrical Discharge Machining (WEDM) of AISI D3 tool steel has been reported in this study. The AISI D3 steel is extensively used in tool and die making industries. The machining of ulta-precision dies with the required corner accuracy and surface finish is only possible through WEDM process. It is known fact that the wire deflection and the wire rupture are the problems associated with the WEDM process (Lin et al. (2001), Sarkar et al. (2011)). The wire deflection at the corner is causing corner error. The objective of the present work is to minimize the corner error by modifying the programmed path of the wire. The experiments were conducted based on Taguchis L-27 orthogonal array. The influence of the control factors namely workpiece thickness, flushing nozzle height, corner angle, pulse on time, pulse off time, peak current and wire tension on the process responses such as Area removal rate (ARR), surface roughness (Ra) and corner error (CE) were studied. A set of pilot experiments were carried out by modifying the programmed path (wire path) in view of improving the corner accuracy of the profile. A good improvement in corner accuracy (about 25%) has been achieved.
    Keywords: WEDM; AISI D3 tool steel; Corner error; wire path modification.

  • Effect Process Parameters in TIG/MIG Welding On the Mechanical Properties and Corrosion Behaviour of Dissimilar Welded DSS/HSLA Steel   Order a copy of this article
    by SURESH Ramaligam, M. Saravanan 
    Abstract: The metallurgical factors controlling dissimilar metal weld is more challenging and intricate than similar welding due to the necessity of obtaining required mechanical properties with desired microstructure for marine applications. The fundamental reason for this exploration work is to study the tensile behaviour and Tafel polarisation of dissimilar weld between Duplex Stainless Steel (DSS) and HSLA Steel, to establish a sound weld free from weld discontinuities for distinctive welding parameters common for two TIG and MIG welding systems. The dissimilar DSS and HSLA steel are welded with TIG and MIG welding process using a single-V groove test specimen; with angle of 70
    Keywords: Dissimilar welding; TIG/MIG welding; Duplex Stainless Steel; High Strength Low alloy steel.

  • Mechanical Behavior and High Strain Rate Deformation of Stainless Steel 316L Processed by Selective Laser Melting   Order a copy of this article
    by Travis Kneen, Christopher Barrett, Guha Manogharan, Patrick Carlson, Jason Dimon, Brett Conner 
    Abstract: With growing interest in metal additive manufacturing (AM) for aerospace and defense applications, it is important to understand the influence of processing conditions on high strain rate behavior. This paper presents research on as-built stainless steel 316L AM parts processed using laser powder bed fusion (L-PBF) also referred to as selective laser melting (SLM). Two sets of varied process parameters were examined as well as different build orientations. Laser scan speed and point-to-point distance are shown to have influenced the high strain rate mechanical properties of 316L AM parts. Additionally, both wrought and SLM produced 316L showed strain rate sensitivity (hardening) at strain rates of 10^3 s-1, but this effect was more pronounced in the wrought material. Findings from this study can be used to determine appropriate part orientations and AM process parameters and their influence on the high strain rate behavior and impact performance of L-PBF AM parts.
    Keywords: High strain rate behavior; Additive manufacturing; Selective laser melting; SS 316L; Microstructure; Process parameters; Charpy tests; Split-Hopkinson Pressure Bar (SHPB).

Special Issue on: ICONNECT 2K18 Application of Additive and Subtractive Manufacturing for Industrial Challenges

  • Effect of Process Parameters on Microstructural and Mechanical Properties of Friction Stir Welded Dissimilar Aluminium Alloys AA 6061 and AA 7075   Order a copy of this article
    by Manikandan R, Elatharsan G 
    Abstract: Frictions stir welding of dissimilar alloys are an efficient way to industrial applications. The effect of joining dissimilar alloys (AA6061-AA7075) to improve the strength of the joint materials of efficient stir weld. This work micro-hardness and mechanical properties of frictions stir welded dissimilar alloys has investigated. Aluminium alloy which is heat treatable and subjected to either hot working or cold-working. The heat treatment followed by revolutionizing and precipitation hardening. Micro hardness has measured at various zones of the welded joints. The tensile properties of dissimilar joints are characterized .Tensile test results will published and the stress-strain curve indicated the mechanical properties causes the frictions stir welding parameters. . Cylindrical threaded profile has to do important role among the other tool profiles. It contributes 93% to the overall efficiency. High strength of 172 MPa attained the tool made up of cylindrical threaded pin profiled tool. This work inferred that the rotational speed transverse speed, and D/d ratio for cylindrical threaded has considered more efficient. Maximum tensile strength could be obtained from the cylindrical threaded tool and it has comparatively high as other than materials. Tensile and hardness measurement done on this part of material characterization.
    Keywords: FSW; Micro hardness; dissimilar alloys; heat treatment; cylindrical.
    DOI: 10.1504/IJRAPIDM.2020.10025265

Special Issue on: 21st Century Manufacturing

    by Eric Wooldridge 
    Abstract: It is understood that additive manufacturing (AM) allows the designer to control the exterior shape and internal structure for the design and fabrication of products. However, although AM allows for some internal structural control, how the designer controls that internal structure is limited to the options of the slicing software and the equipment. The designer does not have options within current slicer software to create customized shapes of concentrated material within the internal structure. Designers have to increase the infill throughout the entire object to address a limited area material failure zone. This paper introduces a methodology known as the Phantom Hole (PH) technique that will allow designers to create custom shaped, solid, internal structures within objects fabricated by many Fused Filament Fabrication (FFF) machines. In initial shear and flexural testing, the PH technique resulted in a 39% improvement in specimen loading performance over specimens fabricated with higher infill percentages.
    Keywords: Additive Manufacturing; FFF; Fused Filament Fabrication; FDM; Fused Deposition Modeling; 3D Printing; Phantom Holes; Desktop 3D Printers; 3D Printer; Optimized Internal Structure; Infill; Slicer; topology; Internal Topology; optimized topology; Internal reinforcement; Perimeter shells; Phantom Hole technique;.
    DOI: 10.1504/IJRAPIDM.2020.10020267
  • A smart decision making tool for cleaning process planning in remanufacturing   Order a copy of this article
    by Juan Martinez, Zhenhua Wu, Jianzhi Li, Miguel Gonzalez 
    Abstract: Equipping stakeholders with advanced tools to make better decisions for sustainable production is key to research in smart manufacturing in the 21st century. A smart decision tool to select the optimal cleaning processes for remanufacturing is presented in this paper. The approach started from formulating the process selection problem to a linear programming model to minimize the cost while observing the constraints of part cleaning level, processing time, and energy consumption. In order to model the vague and uncertain information associated with contamination, cost, time and energy consumption, fuzzy sets were applied. Finally, a genetic algorithm was proposed to search for the optimal solution to the mathematical model. Further, a software prototype was coded in Matlab
    Keywords: smart decision; cleaning; process planning; remanufacturing.
    DOI: 10.1504/IJRAPIDM.2020.10019512
  • A Statistical Approach for Process Optimisation of Digital Light Processing (DLP) 3D Printing Process   Order a copy of this article
    by Ergin Erdem, Arif Sirinterlikci 
    Abstract: This study focuses on experimental design based approach for process optimisation of a custom-made digital light processing 3D printer. Output measures are developed taking precision and accuracy into consideration. Initial runs were conducted to identify the prominent factors which might play role on output measures. The results indicate that the layer thickness plays a significant role for the two of the developed output measures, photopolymerisation time for one measure, and sequence time for two measures as the interaction-effects also play a role to some. A composite figure that considers all three output measures simultaneously are also developed and a stepwise regression analysis is conducted to identify significant factors. The regression model has moderate R2 value (68.12%), also indicating that layer thickness and photopolymerisation period play a role. The recommended levels for layer thickness is found to be 0.2 millimetres and photopolymerisation period as 12 seconds based on the composite figure.
    Keywords: Process optimisation; design of experiments; digital light processing; 3D Printing; stepwise regression.
    DOI: 10.1504/IJRAPIDM.2020.10019626
  • Mass production strategy for additive manufacturing by stacking the product at design phase   Order a copy of this article
    by Arivazhagan Pugalendhi, Rajesh Ranganathan, M.P. Sreekanth 
    Abstract: Mass production is usually aimed to reduce the costs involved in product development by increasing the number of units without compromising the quality. Additive manufacturing (AM) technology can reduce the manufacturing lead time; however, it is widely seen as a non-mass production system due to its build volume restrictions and many other factors. In this paper, a strategy named as stacking of parts during modeling/design phase is recommended to overcome the above-mentioned limitation. Objet260 Connex PolyJet AM machine is used for this study. A square component and a washer are used for experimental purpose. From the study, it is evident that by adopting a different strategy during the design phase, mass production approach can be adopted in AM. The sample work of a square component proved that model material is reduced by 61.05% and support material is saved by 91.53% for square component with stacking (8 x 8 x 33) in the design phase when compared to building a single component. Alternatively, there is a reduction in material consumption for washer by 73.46% for model and 87.14% for support (8 x 8 x 48), as compared to manufacture of single washer component. Further, the number of parts which can be built with stacking in the design phase have increased drastically compared with the case of the array made using Objet studio. Finally, mechanical properties were also analysed in terms of the parts quality. This research paper provides a unique way of meeting the mass production strategy of AM machine, with a novel approach adopted during the pre-processing stage.
    Keywords: Mass production; Additive manufacturing; PolyJet; stacking; build volume; material consumption.
    DOI: 10.1504/IJRAPIDM.2020.10019426
  • Teaching leadership in additive manufacturing: doing the right thing, before doing it right   Order a copy of this article
    by Jennifer Loy 
    Abstract: As additive manufacturing matures, there is sufficient critical mass in the industry and market place to justify the development of more comprehensive and cohesive educational strategies. This article is informed by research into the emerging educational landscape for the technology. The article highlights the breadth of educational strategies currently employed and considers drivers for additive manufacturing education and their development in the context of supporting the education of both an effective, as well as efficient, workforce for the future.
    Keywords: Education; engineering; industrial design; strategy; workforce; future; Industry 4.0; production; training; teaching; leadership; additive manufacturing; 3D printing.

  • Investigation of the Tensile Properties in Fiber-Reinforced Additive Manufacturing and Fused Filament Fabrication   Order a copy of this article
    by Yolnan Chen, Cesar Ortiz Rios, Astrit Imeri, Nicholas Russell, Ismail Fidan 
    Abstract: This research project examines how fiber orientation affects the strength of a part produced by Fiber-Reinforced Additive Manufacturing (FRAM) process. Tensile specimens with varying fiber orientations were made using a 3D printer capable of printing with carbon fiber (CF), Kevlar (KV), and fiberglass (FG). Various tensile tests have been performed for different fiber orientation and materials. The strongest fiber orientations, in descending order, were two ring concentric with isotropic fill and five ring concentric fill. While fiber orientation and infill percentage could be specified for each layer, the fiber starting location was automatically determined which sometimes resulted in decreasing strength of the part by introducing stress concentration. Currently, industrial trends in the utilization of Fused Filament Fabrication (FFF) printers are mostly on PLA and ABS based polymer materials. And, there is no comprehensive study available investigating the relations between these traditional FFF processes and continuous FRAM processes. The aim of this study is to provide an in-depth tensile property analysis showing the advantageous of FRAM compared to conventional FFF technologies.
    Keywords: Fiber-Reinforced Additive Manufacturing; Tensile Test; Concentric; Isotropic; Fused Filament Fabrication.
    DOI: 10.1504/IJRAPIDM.2020.10019313
  • Experimental and numerical investigation on the effect of layer thickness during laser powder-bed fusion of stainless steel 17-4PH   Order a copy of this article
    by Zhidong Zhang, Usman Ali, Yahya Mahmoodkhani, Yuze Huang, Shahriar Imani Shahabad, Adhitan Rani Kasinathan, Ehsan Toyserkani 
    Abstract: Layer thickness is one of the most important input process parameters in Laser Powder-Bed Fusion (LPBF) additive manufacturing (AM) since it directly affects the level of defects in the final products, such as porosity and cracks and also the manufacturing rate. In this work, three-dimensional finite element heat transfer model was employed to compare and evaluate two different powder layer thicknesses (20 μm and 40 μm) at varying laser power and scanning speeds. A layer-thickness dependent laser absorptivity approach was considered to improve the prediction accuracy of the proposed model. Single track experiments with stainless steel 17-4PH were conducted to validate the simulation model. Simulation results show good agreement with the experimental results with different layer thicknesses. The corresponding averaged melt pool error for width and depth were 4.2% and 9.1%, respectively. It is found that the melt pool dimensions with different layer thicknesses are similar for the most part with slight variations in the melt pool dimensions using varying laser power and scanning speed. However, the morphology of the melt pool track shows visible changes between different thicknesses.
    Keywords: Additive manufacturing; Laser powder-bed fusion; Layer thickness; 3D-Heat transfer modeling.

  • A comparison framework to support the selection of the best additive manufacturing process for specific aerospace applications   Order a copy of this article
    by Alberto Garcia-Colomo, Dudley Wood, Filomeno Martina, Stewart Williams 
    Abstract: Additive Manufacturing (AM) is a cutting-edge technology that provides up to 100% of material efficiency and significant weight reduction which will positively impact aircraft fuel consumption in addition to high design freedom. Consequently, many aerospace companies are considering implementing AM thanks to these benefits. Therefore, the aim of this research is to assist aerospace organisations with a selection among different AM technologies. To enable this, primary data from (8) experts in the field of AM was collected through semi-structured interviews and cross-referenced with secondary data to identify the key factors for consideration in the selection of AM equipment for aerospace applications. Four AM technologies Laser Powder Bed Fusion (LPBF), Electron Beam Powder Bed Fusion (EBPBF), Wire Arc AM (WAAM) & Laser Metal Deposition (LMD) were highlighted by the experts as the most appropriate for aerospace applications. The main outcome of this study is the development of a comparison framework that helps companies select their AM technology depending on their main business or specific application.
    Keywords: Additive Manufacturing; aerospace; business drivers; decision-making.
    DOI: 10.1504/IJRAPIDM.2020.10019230

Special Issue on: ICONEEEA-2K19 Impact of Nanomaterials in Rapid Manufacturing for Industrial Challenges

  • Experimental prediction and investigation of spring back in V bending profile process modeling using Artificial Neural Network   Order a copy of this article
    Abstract: The model which is used to speak to including yield connections to wide a wide range of parameter space for foreseeing responses repeatedly is an Artificial Neural Network (ANN).Several researchers focused on the improvement of investigative, semi-logical and numerical models to anticipate the springback and curve force in air bend. The huge researches are abridged quickly.ANN has high adaptability in fitting an informational collection and, therefore, they are used regularly in making inexact models. The qualities of ANN, for example, vigor, adaptation to non-critical failure, parallel usage and capacity to delineate non-straight connections and collaborations of process parameters, make it a promising device for displaying many assembling issues. In this research ANN has picked up noticeable quality as an expectation U bending profile among the researchers of sheet metal bend as the information included are mind boggling and the relations of parameters are very non-straight to comparing RSM .
    Keywords: Artificial neural network [ANN]; Extensive parameter; logical parameters; V bending process.

  • Tool Wear Investigation of Micro-textured and Non-Textured Carbide inserts for Machining Industrial Component   Order a copy of this article
    by Sathiya Narayanan Nagarajan, Baskar N, Metin KOK, Rohit Sankaran, AanandhaManikandan G 
    Keywords: Micro-Texturing; Cross-Chevron; Tool Wear; Dimensional accuracy; surface finish; Industrial Component.

  • Process Evaluation and Optimization of Friction Welding Parameters on Aluminium Grade 6061 by Direct Drive Friction Welding Method   Order a copy of this article
    by Karthikeyan Sambandham, Baskar N., Ganesan M., Gayatri R., Z.W.Zhong  
    Abstract: The expansion of joining processes is very essential in the field of manufacturing to satisfy the industrial needs and customer expectations. Friction welding processes is one of the solid-state welding processes in which similar/dissimilar materials are joined without the use of filler materials. In this experimental investigation, Aluminium Grade 6061 is used as the test specimen for the welding process because of its wide variety of applications in manufacturing and automobile industries. In this research work, a radial drilling machine is used for joining the similar combination materials of Aluminium Grade 6061. The input process parameters such as specimen diameter, upset time and spindle speed are used to evaluate the output response like axial shortening, hardness and impact strength. The input process parameters are selected and investigated using the Taguchi Design of Experiments (DoE) method based on L9 orthogonal array and Particle Swarm Optimization (PSO) Techniques. The major plan of this investigational work is to optimize the friction welding process parameters on axial shortening, impact strength and hardness of the friction bonded specimen.
    Keywords: Friction Welding Process; Input Process Parameters; Output Responses; Optimization Techniques.

  • Performance Analysis of Untreated Tungsten Carbide Tool and Cryogenically Treated With Oil Quenched Tungsten Carbide Tool While Turning Of Inconel 713c   Order a copy of this article
    by Vijayakumar S, Parthiban V 
    Abstract: Inconel 713C bars are widely used in aviation industries and engineering applications. Machining of Inconel 713C superalloy has been performed by using untreated and cryogenically treated with oil quenched tungsten carbide (WC-Co) tools. The performance enhancement of untreated WC-Co carbide tool and cryogenically treated with oil quenched WC-Co tool were checked and they were estimated for their properties through Vicker hardness (untreated tools 1601 HV, cryogenically treated with oil quenched tools 1881 HV), and also were administered to machining of difficult to cut material Inconel 713Csuperalloy under dry condition. The acquiesced cutting speed ranges from 70 to 110m/min which shows its unique parameters of cutting speed in machining Inconel 713C with WC-Co tool. The effect of untreated and cryogenically treated with oil quenched WC-Co carbide tool was evaluated in turning of Inconel 713C on tool wear by using scanning electron microscope (SEM). The sedimental chip morphology is observed in untreated WC-Co tools and the chip morphology of cryogenically treated with oil quenched WC-Co carbide tools are uniform. Obviously cryogenically treated tungsten carbide tools indicated better execution when contrasted and untreated WC-Co tools.
    Keywords: Inconel 713C; dry machining; cryogenic treatment; chip morphology.

  • Comprehensive Analysis on Aluminum in Sand Casting by Using Intelligent Techniques   Order a copy of this article
    by Mahesh Ganesan, K.Murugu Mohan Kumar, S. Bharathi Raja, Z.W. Zhong 
    Abstract: Today's foundry intentions are to succeed the cost-effective casting process. As a consequence of this goal, most of the researchers established numerical models for effective outputs. Numerical models of casting parameters have more considerable outputs for the foundry planner. Generally, the sand casting process comprises numerous parameters interdependently. If the parameters are not measured properly, the mould cavity is forced to reach the defects like porosity and blowholes. To overcome these defects, an extensive study on these factors is needed. During solidification, the important parameters like furnace, sand and vent holes affect the material properties. The molten temperature, pouring time and holding time are most significant parameters in sand casting. Aluminium is one of the highly desirable materials in sand casting. In this work, the various furnace parameters are analysed and compared using artificial neural network (ANN) and fuzzy logic models. The hardness and surface roughness are analysed and the work pieces are tested by using NDT techniques.
    Keywords: Aluminum; sand casting; DOE; ANN; FUZZY; NDT.