Forthcoming articles

International Journal of Nanoparticles

International Journal of Nanoparticles (IJNP)

These articles have been peer-reviewed and accepted for publication but are pending final changes, are not yet published and may not appear here in their final order of publication until they are assigned to issues. Therefore, the content conforms to our standards but the presentation (e.g. typesetting and proof-reading) is not necessarily up to the Inderscience standard. Additionally, titles, authors, abstracts and keywords may change before publication. Articles will not be published until the final proofs are validated by their authors.

Forthcoming articles must be purchased for the purposes of research, teaching and private study only. These articles can be cited using the expression "in press". For example: Smith, J. (in press). Article Title. Journal Title.

Articles marked with this shopping trolley icon are available for purchase - click on the icon to send an email request to purchase.

Register for our alerting service, which notifies you by email when new issues are published online.

Open AccessArticles marked with this Open Access icon are freely available and openly accessible to all without any restriction except the ones stated in their respective CC licenses.
We also offer which provide timely updates of tables of contents, newly published articles and calls for papers.

International Journal of Nanoparticles (13 papers in press)

Regular Issues

  • Thermomagnetic convection in a layer of magnetic nanofluid saturating porous medium with magnetic field dependent viscosity   Order a copy of this article
    by Amit Mahajan, Mahesh Sharma 
    Abstract: In this paper, the effect of magnetic field dependent (MFD) viscosity on the onset of thermomagnetic convection is examined for a horizontal layer of magnetic nanofluid (or ferrofluid) saturated porous layer. A model that comprises the effect of Brownian diffusion, thermophoresis, magnetophoresis, and Darcy's law is considered. We employed the Chebyshev pseudospectral QZ-method to solve the developed mathematical model and the results are derived for water-based and ester-based magnetic nanofluids. The effects of significant parameters are analyzed at the onset of convection in the gravity as well as in the microgravity environment. The influence of MFD viscosity, permeability parameter, the width of the fluid layer, Lewis number, Langevin parameter, particle concentration, and the concentration Rayleigh number at the onset of thermomagnetic convection are graphically illustrated.
    Keywords: magnetic nanofluids; thermomagnetic convection; magnetic field dependent viscosity; microgravity; Darcy medium.

  • Synthesis of cadmium sulphide nanoparticles through liquid membrane pathway   Order a copy of this article
    by Sushma Chakraborty, Prabirkumar Saha 
    Abstract: This paper introduces a proof of concept that liquid membrane technology that has always been used as a separation technique, can also be extended for the generation of value added products in its downstream side. It is possible to generate cadmium sulphide nanoparticles in the stripping phase of liquid membrane separation unit which have wide industrial application such as solar and photovoltaic cells. The process parameters such as concentration of cadmium salt and pH in feed phase, concentration of strippant, concentration of extractant/carrier agent etc. were optimized leading to maximum production of CdS nanoparicles in the stripping phase. The characterization of CdS nanoparticles were carried out using TEM, FESEM-EDX, FT-IR, XRD and SAED. The nanosize and nanocrystalline nature of the CdS particles were established.
    Keywords: Bulk Liquid Membrane; CdS nanoparticles; 1,10 Phenanthroline; TEM; FESEM-EDX; FT-IR; XRD; SAED.

  • Optimization of Carbon Nanotubes for Advanced Diagnosis and Biomedical Application   Order a copy of this article
    by Khalid Parwez 
    Abstract: Nanomaterials have a broad spectrum of applications in bioengineering and pharmaceutical fields, and carbon nanotubes (CNT) are among the most versatile and well-characterized members of this group of materials. The aim of this review is to discuss how CNTs can be exploited as diagnostic tools in various diseases. Various ways to functionalize the CNTs have been broadly discussed among which functionalization with antibodies has gained significance in recent years. Antibodies make their surface sensitive to surroundings which can be utilized in immuno-sensing. Surface passivation with other proteins is required to inhibit the non-specific binding of biomolecules on the hydrophobic carbon nanotube surface for ultrasensitive detection of biological species. The various intrinsic optical properties of SWCNT can be applicable in NIR-imaging of both in-vitro and in-vivo biological systems. They also have unique resonance-enhanced Raman signatures for Raman detection/imaging. CNT-based immuno-sensors provide very good results with a promising sensitivity and reproducibility and, in combination with novel devices (such as microfluidic electrochemical biosensor, Nanoelectromechanical systems (NEMS), Paper-based analytical devices (PADs), Field effect transistors (FET)), offer an attractive analytical approach for the fast, low-cost, and accessible detection of trace prognostic biomarkers, microbial pathogens, environmental pollutants and toxins.
    Keywords: Nanomaterials; Carbon nanotubes; Functionalization; Biosensor; Immuno-sensor; FETs; MEMS; PADs; Tissue Engineering.

  • A Novel Approach for Computation of Cosine Function   Order a copy of this article
    by Abul Hasnat, Santanu Halder, Azizul Hoque, Debotosh Bhattacharjee 
    Abstract: Trigonometric function evaluation is required in almost all science and engineering applications. Objective of trigonometric function approximation in any digital systems are- faster computation in less number of clock cycles, optimizing hardware resource requirement for the circuit, accura-cy in more number of bits in the evaluated output etc. This study proposes a novel method for cosine function computation and its respective FPGA based architecture. In this method, a triangle is presumably located in the first quadrant of a circle with unit radius whose one vertex is the centre, other two vertices touches the perimeter of the circle. Using the area of the triangle, it is observed that the y coordinate of the third vertex of the triangle is the sine value. The error is difference between arch length and side length. Newtons interpolation method is used to formulate the error approximation function. Once the error is approximated, the value of the y co-ordinate is calculated. This method is implemented using VHDL, synthesized on Xilinx Spartan 3 xc3s200-5ft256 FPGA kit simulated on ModelSim 6.2c. The proposed architecture gives accuracy of the computed cosine value up to 14 bits or more in 96% cases in eleven clock cycles only. The proposed architecture operates as fast as 89.977 MHz.
    Keywords: Triangle; Unit Circle; FPGA; CORDIC; Sine; Cosine; Newoton’s Interpolation.

  • Microwave assisted green synthesis of ZnO and Ag doped ZnO nanoparticles as antifungal and antibacterial agents using Colocasia esculenta leaf extract   Order a copy of this article
    by Kiran Kumar Prem Kumar, Satish Kumar Murari, Nandipura D. Dinesh 
    Abstract: Considering the growing popularity of biosynthesis methods, the use of plant extracts for environment friendly synthesis of nanoparticles and the novel biomedical applications of zinc oxide (ZnO), the present study aims to synthesise ZnO and Ag doped ZnO nanoparticles through microwave assisted green synthesis method using the leaf extract of Colocasia esculenta. The nanoparticles synthesised were characterised for the assessment of their crystal structure, chemical phases, optical properties, distribution of particle size, stability, morphology, elemental composition, etc., by using a range of techniques, taking into account that the benefits of ZnO nanoparticles as piezoelectric conductors, transducers, antimicrobial agents, etc., predominantly depend on such morphological aspects. The efficiency of the synthesised nanoparticles as antimicrobial agents and comparison of the biocidal effects of doped and undoped nanoparticles were examined against the bacterial species, Bacillus subtilis and Escherichia coli, as well as the fungal species, Aspergillus oryzae and Saccharomyces cerevisiae, by using the cell culture technique.
    Keywords: ZnO nanoparticles; ZnO/Ag nanocomposites; nanotechnology; Colocasia esculenta; green synthesis; leaf extract; microwave method; characterisation; antifungal; antibacterial.

  • Silicon Based Core-shell Nanoparticle’s Nanobiomedical Characterization
    by Ahmad Salmanogli, Farzin Asghari Sana 
    Abstract: Using functionalized nanoparticles in nanobiomedical applications cause to raise questions about unintentional effect of such powerful agents on the human body. In other words, the study of nanoparticle toxicity can be considered as a curtail key for the biological applications. In this study, the core/shell nanoparticles such as Si/Au and SiO2/Au were synthesized and functionalized with some biological elements. For satisfying some medical standards and biomedical critical test conditions, a few in-vitro assays as cytotoxicity and hemolysis should be done. For this reason, cytotoxicity and hemolytic effects of the functionalized nanoparticles such as Si/Au/Biotin and SiO2/Au/Biotin and their derivatives were evaluated on Hep-G2 cells and humane red blood samples. It is shown that cytotoxicity and hemolysis effects of the all synthesized nanoparticles are concentration-dependent. Also, the results are shown that most cytotoxicity and hemolytic effects are observed for Si/Au and SiO2/Au without Biotin groups after 48h and 30 minutes, respectively.
    Keywords: Silicon Core/shell nanoparticle, Nanocytotoxicity, MTT cytotoxicity assay, hemolysis

Special Issue on: DevIC 2017 Nanotechnology and High-Speed Electronic Systems

  • Optimization of fully depleted SiGe channel with raised source/drain buried oxide nMOSFET   Order a copy of this article
    by K. VANLALAWMPUIA, Brinda Bhowmick (Shome), Madhuchhanda Choudhury 
    Abstract: A fully depleted silicon-germanium (SiGe) n-channel heterojunction MOSFET with raised buried oxide in the source/drain is reported under the consideration that channel is made of SiGe and source/drain regions is made of Silicon (Si). Due to the raised buried oxide source/drain region, it provides better current due to the improvement of mobility in the channel region and also reduce the surface scattering effects. Bandgap engineering has been done to improve the electrical behavior of the device. Simulation work for different parameters on the device has been carried out and presented in the paper. The electrical characteristics of the proposed device is optimized by varying the device dimensions. Effect of mole fraction on threshold voltage (VTH), Subthreshold swing (SS), ION and IOFF Current ratio is analyzed. It is observed that due to presence of SiGe channel and the raised source/drain, the proposed device shows enhancement in electrical characteristics. A CMOS inverter through proposed device has been implemented and the effect of mole fraction on its characteristic is reported. Average delay increases as mole fraction increases.
    Keywords: SiGe channel; fully depleted; buried oxide.

  • Reduced Ordered Binary Decision Diagram based Combinational Circuit Synthesis for Optimizing Area, Power and Temperature   Order a copy of this article
    by Apangshu Das, Akash Debnath, Sambhu Nath Pradhan 
    Abstract: At sub-micron technology, temperature plays an important criterion to design a VLSI circuit. With the increase of functionality demand, component density in integrated circuit increases resulting in the increase of reliability issues, such as increases in power-density. The temperature of an integrated circuit is directly proportional to the power-density. Excessive temperature generation highly affects the yield of the circuit. To limit the temperature rise, power-density is to be minimized. However, reduction of power and power-density increases the area. So, there is a trade-off among area, power, and power-density. In this paper, an attempt is made to tackle the rise in circuit temperature by optimizing power-density (and of course considering trade-off with power and area) during logic synthesis level, keeping in mind that thermal-aware realization with data structure manipulation and power reduction technique can solve the problem of temperature rise. Reduced Ordered Binary Decision Diagram (ROBDD) being canonical in nature and having node reduction capability by proper variable ordering makes a suitable choice of logic realization in this work. ROBDD is used here not only to reduce area (node) but also the possibility of reducing power and temperature (power-density) is explored. Variable ordering is done using Genetic Algorithm (GA). In this work, a genetic algorithm based approach is presented to determine a suitable variable ordering during the formation of the ROBDD for its thermal-aware realization considering other parameters like area and power without performance degradation. Proposed approach shows more than 33% savings in area and power, and 5.61% savings in power-density with respect to initial ROBDD representation of LGSynth93 benchmark circuits. Actual on-chip area, power dissipation and the absolute value of temperature are calculated using CADENCE and HotSpot tool to validate the power-density based results.
    Keywords: BDD; ROBDD; Area power power-density trade-offs; Genetic Algorithm; variable ordering; Temperature; HotSpot.

  • Nanoscale T Shaped AlGaN/GaN HEMT with Improved DC and RF Performance   Order a copy of this article
    by Meryleen Mohapatra, Tanmoy De, Ajit Kumar Panda 
    Abstract: In this research work, two AlGaN/GaN based HEMT with different gate structure are designed. The first one is normal rectangular shaped HEMT with a gate length of 150nm and another one is T shaped HEMT with a gate foot print of 90nm. A comparison is done for the obtained results of both the HEMTs. It is shown that the DC parameters like drain current, transconductance are improved for T shaped HEMT as compared to normal gate HEMT. Coming to the RF performance, the maximum cut-off frequency of the normal gate HEMT is 24GHz at the drain voltage of 20V and the gate voltage of 2V whereas the maximum cut-off frequency of the T-shaped gate HEMT is 47GHz at the same drain and gate voltage. For T-shaped HEMT, it is observed that maximum cut-off frequency is double of the normal gate HEMT. Maximum frequency of oscillation for normal gate HEMT is 95GHz and for T-shaped gate HEMT it is 115GHz at same drain and gate voltage i.e. 2V and 20V. At the operating frequency of 5GHz, the minimum noise figure of the normal gate HEMT is 0.13dB. At the same operating frequency the minimum noise figure of the T-shaped gate HEMT is 0.05dB. Intrinsic time delay is calculated for both the device. Intrinsic time delay of normal gate HEMT is 22ps where as the intrinsic time delay for T gate HEMT is 12ps. These results prove that the DC and RF performance of a T-shaped gate HEMT is much better than a normal gate HEMT and so the T-shaped gate HEMT is more preferable for high frequency operations like radar communication, satellite communication, wireless communication etc.
    Keywords: High Electron Mobility Transistor; Cut-off frequency; Intrinsic time delay.

  • Electrical parameter analysis of gate-extension on source of germanium tri-gate FinFET   Order a copy of this article
    by Rajashree Das, Srimanta Baishya 
    Abstract: This paper presents the impact of geometrical and the electrical parameters such as the concentration in channel region, variation of temperature, drain potential, gate work function, and electrostatic potential on the electrical characteristics of Germanium (Ge) FinFET with two stacked gate dielectrics overlap on the source. The presented device exhibits better performance in terms of ION, IOFF, and ION/IOFF compared to the conventional FinFET structure.
    Keywords: Dual dielectric; FinFET; Germanium; Silicon; Source overlap.

  • Impact of structural parameters on DC performance of recessed channel SOI-MOSFET   Order a copy of this article
    by Sikha Mishra, Urmila Bhanja, Guru Prasad Mishra 
    Abstract: With the concept of groove gate and implementing the idea of silicon on insulator, a new analytical model is developed for the RRC-SOI (rectangular recessed channel silicon on insulator) MOSFET. This analytical model is formulated using 2-D Poissons equation and develops a compact equation for threshold voltage using minimum surface potential. This paper analyses the effect of negative junction depth on device parameters, such as minimum surface potential, threshold voltage, sub-threshold slope, and drain induced barrier lowering. The impact of oxide thickness variation on the above parameters has also been evaluated. Further, the linearity performance in terms of figure of merits and device parameters like drain current and trans-conductance of the proposed model is compared with the simulated results of RRC (rectangular recessed channel) MOSFET. The validity of the proposed model has been verified with simulation results performed on Sentaurus TCAD device simulator.
    Keywords: Short-channel effects (SCE); silicon-on-insulator (SOI); rectangular recessed channel (RRC); negative junction depth (NJD).

  • Electro-Thermal Assessment of Heterojunction Tunnel-FET for Low-Power Digital Circuits   Order a copy of this article
    by Tara Prasanna Dash, Sanghamitra Das, Suprava Dey, C.K. Maiti 
    Abstract: To overcome the fundamental limitations of conventional MOSFETs, tunneling field effect transistors (TFETs) with strained-SiGe channel (via heterogeneous integration) may be used and is demonstrated using TCAD simulations. We mainly focus on the design and implementation of silicon-germanium (SiGe) based tunnel field effect transistor, aiming to reduce the device operation voltage down to below 0.5V. Physics-based electro-thermal simulations are performed for evaluating the self-heating (temperature rise) in the devices. We present the results of the electro-thermal analysis supported by effective 2D and 3D device simulations. Performance improvement in drain current as high as 200% has been achieved.
    Keywords: Heterostructure Tunnel FET; strained-SiGe; Heterogeneous Integration; Electro-thermal simulation.

  • Analysis and Circuit Sizing Performance of a Differential amplifier using HPSO Algorithm   Order a copy of this article
    Abstract: This paper presents an analysis of thermal noise of differential amplifier and automated sizing procedure with thermal noise incorporation, in addition to various design specifications, as constraints in the design process. Human Behavior-Based Particle Swarm Optimization (HPSO), a Swarm Intelligence (SI)-based optimization algorithm is used to perform the sizing task to obtain optimal value of design variables value subject to a satisfying set of constraints, with the main objective of designing a Low-noise amplifier with minimum circuit area. The presented design procedure gives an option of considering both width and length of MOS transistor as design variables, which in turn can tune trade-off circuit performance parameters. The computational analysis is performed in MATLAB and CADENCE tool with UMC 180 nm parameters technology is used to validate the presented design procedure. Further, the performance of the purposed automated design methodology is compared with previous design methodology to check its efficiency in terms of speed, time and robustness.
    Keywords: HPSO; Differential amplifier; Thermal noise; Area Optimization; Circuit Sizing.