Forthcoming articles

International Journal of Masonry Research and Innovation

International Journal of Masonry Research and Innovation (IJMRI)

These articles have been peer-reviewed and accepted for publication but are pending final changes, are not yet published and may not appear here in their final order of publication until they are assigned to issues. Therefore, the content conforms to our standards but the presentation (e.g. typesetting and proof-reading) is not necessarily up to the Inderscience standard. Additionally, titles, authors, abstracts and keywords may change before publication. Articles will not be published until the final proofs are validated by their authors.

Forthcoming articles must be purchased for the purposes of research, teaching and private study only. These articles can be cited using the expression "in press". For example: Smith, J. (in press). Article Title. Journal Title.

Articles marked with this shopping trolley icon are available for purchase - click on the icon to send an email request to purchase.

Register for our alerting service, which notifies you by email when new issues are published online.

Open AccessArticles marked with this Open Access icon are freely available and openly accessible to all without any restriction except the ones stated in their respective CC licenses.
We also offer which provide timely updates of tables of contents, newly published articles and calls for papers.

International Journal of Masonry Research and Innovation (19 papers in press)

Regular Issues

  • Behaviour of block masonry under in-plane loading   Order a copy of this article
    by Roberto Capozucca, Erica Magagnini 
    Abstract: In the design of buildings, the strength of modern masonry under compression and shear is crucial for safety in seismic areas. Modern unreinforced masonry (MURM) built with perforated clay blocks may also be considered adequate in terms of withstanding seismic action. However, the performance of MURM is influenced by many parameters such as solid or perforated units and strength, deformability and thickness of mortar joints. In this paper, the strength of blockwork walls built with two types of perforated clay blocks, lateral surfaces toothed and smooth, and different mortar joints has been experimentally tested under loading in-plane. An extensive investigation based on compression tests and diagonal compression tests of blockwork walls has been carried out. The experimental results are presented and discussed. The response of blockwork walls under diagonal tests have been analysed comparing experimental data with that obtained with finite element method (FEM).
    Keywords: blockwork masonry wall; experimental test; shear strength; FE analysis.
    DOI: 10.1504/IJMRI.2019.10016601
     
  • Macroelement and dynamic seismic analysis of the medieval government building of Perugia, Italy   Order a copy of this article
    by Marco Corradi 
    Abstract: This paper emphasizes the actual structural analysis of a multistory medieval building, located in Perugia, Italy, for seismic resistance. This is the local Governor building of the capital city of Umbria, known as Palazzo dei Priori, an iconic grade-I stone masonry construction. Strong emphasis is placed on specific issues, critical for the structural response of the building under the seismic action. Fundamental assessment methods are presented and discussed to find vulnerabilities and defects that affect its seismic response. The discussion includes the analysis by macro-elements (local analysis), leading to the identification to the most likely collapse mechanisms of the building under the seismic action. In addition to the macro-element method, a non-linear analysis is given for the whole building. All the used analyses are carried out with reference to the Italian guidelines for heritage protection and conservation and by considering the architectural and artistic assets of the building.
    Keywords: Historic masonry; earthquake engineering; numerical modelling; seismic assessment.

  • Testing and Analysis of Masonry Hollow Clay Block Prisms Filled with Mortar   Order a copy of this article
    by Marcio Nascimento, Humberto Roman, Fernando Fonseca 
    Abstract: In some design situations, in construction systems with structural masonry, an increase in the capacity of the walls is required, which can be achieved with the filling of empty cells of masonry blocks with grout. The Brazilian technical standard for clay masonry blocks aiming at attaining greater agility and flexibility in the construction process allows the use of bedding mortar instead of grout to fill the cells of the blocks. In this context, the objective of this study was to evaluate the mechanical behavior of prisms filled with bedding mortar. Six classes of mortar and one type of clay block with nominal resistance of 6 MPa were studied. The results of the compressive strength of the prisms indicate the viability of using bedding mortar with the same structural function as grout. This article presents also an analytical study to evaluate the mechanical behavior of clay block prisms filled with mortar. Analyses were conducted using a general-purpose, nonlinear finite element software that simulates structural behavior under different loading scenarios. A three-dimensional model of the prisms was developed using 8-node brick elements for both block and mortar with non-linear properties assigned to each material.
    Keywords: structural masonry; compressive strength; clay blocks; FEA; numerical modelling.

  • Effect of Modified Fiber Flour Wood on the Fresh Condition Properties of Cement Based Mortars   Order a copy of this article
    by Fadhel Aloulou, Sabrine Alila 
    Abstract: Abstract: The effect of wood fiber flour in a studied Portland cement material shows interesting mechanical properties. The objective of this work is the elaboration new composite materials by emulsion. The dispersion of wood fiber and compressive strength was studied. The results showed an improvement in compressive strength of over 40% with 2% added wood fibers flour. The chemical modification of the wood fibers by grafting alkyl chains into their surfaces changes from the hydrophilic state to the hydrophobic state which makes it necessary to reduce the amount of water absorbed by the sample. The addition of anionic surfactant: Sodium dodecylbenzenesulfonate (SDBS) in the mixing water further improves the surface of the samples by minimizing the pore size, hence the reduced water absorption. The alkaline treatment of the fibers before their injection into the cement paste has a very remarkable effect on the mechanical behavior of the composites.
    Keywords: Wood; Flour wood; Emulsion; surfactant ; cement.

  • Experimental assessment of large displacement cyclic in-plane shear behaviour of semi-interlocking masonry panels   Order a copy of this article
    by Md Akhtar Hossain, Yuri Z. Totoev, Mark J. Masia 
    Abstract: A Semi Interlocking Masonry (SIM) building system has been developed in the Centre for Infrastructure Performance and Reliability at The University of Newcastle, Australia for seismically vulnerable regions as an alternative to traditional masonry panels. This innovative masonry building system consists of mortar-less masonry panels with multiple sliding bed joints made of semi-interlocking units capable of relative sliding in-plane of a panel but interlocked against relative out-of-plane movement. The SIM panel can withstand large in-plane displacements without damage due to the sliding joints in the panel. These new panels are suitable for both infill and confined masonry. An experimental program was conducted to evaluate displacement ductility of the infill panels under large displacement. It used a special steel testing frame with pin connections, which allows application of in-plane shear distortion to the panel up to 120 mm. The study presented herein focused on the experimental investigation of large cyclic in-plane shear behaviour of three different types of panels: (i) panel with an open gap between the steel frame and the top of the panel, (ii) panel with foam in the gap, and (iii) panel with grout in the gap. This paper reports the results of this testing program with mechanically interlocking units with main focus on the force-displacement relationship and the energy dissipation capacity of panels. The structural performance of the SIM panels is also analysed, and potential displacement patterns are identified under large displacement.
    Keywords: Semi-interlocking masonry; sliding joints; in-plane cyclic testing; energy dissipation; damping capacity; large displacement.

  • LIMIT ANALYSIS OF MASONRY ARCH BRIDGES THROUGH AN ADAPTIVE GA-NURBS UPPER-BOUND APPROACH   Order a copy of this article
    by Andrea Chiozzi, Nicola Grillanda, Gabriele Milani, Antonio Tralli 
    Abstract: This paper investigates the application of a fast and reliable NURBS-based kinematic limit analysis approach for the assessment of the collapse behavior of masonry bridges. This approach relies on the description of the geometry of the bridge structure by means of NURBS approximating functions. Starting from the known geometry, an assembly of rigid bodies can be generated, composed by very few elements which still provide an exact representation of the original geometry. The main properties of masonry material are accounted for through homogenization and a upper-bound formulation for the limit analysis of the obtained mesh is devised. The approach is capable of accurately predicting the load bearing capacity of masonry bridges with arbitrary geometry and load configuration, provided that the initial mesh is adjusted by means of a suitably meta-heuristic approach (i.e. a genetic algorithm) until element edges correctly approximate the actual yield lines of the collapse mechanism.
    Keywords: Masonry Bridges; NURBS; Limit Analysis; Genetic Algorithms;.

  • BOND BEHVIOUR OF FRP STRENGTHENING APPLIED ON CURVED MASONRY SUBSTRATES: NUMERICAL STUDY   Order a copy of this article
    by Ernesto Grande, Gabriele Milani, Antonio Formisano, Bahman Ghiassi, Francesco Fabbrocino 
    Abstract: Aim of the present paper is to numerically investigate the bond behaviour of FRP strengthening systems externally applied on curved masonry specimens. In particular, considering the simple spring-model approach proposed by the authors in previous research, a new constitutive law derived from the work of Thorenfeld et al. (1987) is here proposed by also considering the coupled behaviour between shear and normal forces at the reinforcement/masonry interface. Numerical analyses are developed with reference to case studies deduced from the literature and consisting of shear-lap bond tests of curved masonry specimens characterized by different values of the geometric curvature and different strengthening configurations. The obtained results show the ability of the proposed modelling approach in capturing some effects, such as the beneficial friction effect when compression normal stresses develop at the interface level.
    Keywords: FRP; debonding; masonry curved structures; spring-model.

  • In-plane Shear Testing of Unreinforced Masonry Walls and Comparison with FEA and NZSEE Predictions   Order a copy of this article
    by Milon Howlader, Mark Masia, Michael Griffith 
    Abstract: Unreinforced masonry (URM) constructions are vulnerable to seismic loading due to their high mass and stiffness and low ductility and tensile strength. It is important to be able to predict the seismic resistance and the governing failure modes of URM walls and components in order to evaluate the seismic hazard for existing URM structures. If local out-of-plane failure mechanisms are restrained via suitable detailing, the capacity against collapse under seismic loading for URM buildings is typically limited to the in-plane shear capacity of the URM walls. Based on observations of damage suffered from previous earthquakes, the present study was conducted to investigate the global and local in-plane response of perforated URM walls under earthquake loading. Full-scale cyclic in-plane testing of URM walls with an arched opening which were designed to represent walls in heritage URM structures in Australia was performed. The study investigated the behaviour of both pier and spandrel elements within the walls. Emphasis was also given to the position of walls within a multi-storey building by varying the pre-compression loads (representing gravity loads) on the walls. The tested walls were then simulated using nonlinear Finite Element analyses (FEA) where simplified micro-modelling (crack-shear-crush) approaches were used to analyse the wall behaviour. Finally, the shear capacities and the failure modes of the walls obtained from the experimental tests and FE analyses were compared to the proposed New Zealand Society for Earthquake Engineering (NZSEE) predictions.
    Keywords: Unreinforced masonry (URM); In-plane shear behaviour; cyclic testing; FEA; NZSEE.

  • The new foundation system of the Basilica di Collemaggios transept   Order a copy of this article
    by Marco Zucca, Pietro Crespi, Nicola Longarini, Manuela Scamardo 
    Abstract: In the seismic retrofitting of historical churches, the realization of new foundations of collapsed elements represents an important aspect for the interaction with both the underground pre-existing structures and the new structural elements to be rebuilt.rnFor the specific case study of the Basilica di Collemaggio, after an accurate geometrical survey and on-site geotechnical tests, a specific mixed structure foundation system is proposed in order to fulfil the seismic safety requirements and the Cultural Heritage Offices conservation prescriptions.rnNonlinear analyses are performed considering the interaction between the soil and the foundation system, together with the new couple of main pillars and the triumphal arch. The analyses are aimed to verify the capabilities of the new foundation system to bear the transversal seismic actions.rnThe analyses are also completed by some experimental tests on micropiles, which represent the main underground-to-elevation connection elements.rn
    Keywords: Foundation system; Historical building; Seismic retrofitting.

  • The Introduction of Confined Semi-Interlocking Masonry System for Buildings to Improve Earthquake Performance   Order a copy of this article
    by Mehdi Hemmat, Yuri Z. Totoev, Mark J. Masia 
    Abstract: Confined masonry is a typical structural system for many developing countries with high risks of an earthquake and limited engineering expertise. Lack of a comprehensive design code for confined masonry buildings brings motivation to develop new efficient and economical confined masonry system with improved seismic performance. One such system is being developed in the Centre for Infrastructure Performance and Reliability at The University of Newcastle. The semi-interlocking masonry (SIM) is a system which has good structural and seismic performance as an energy dissipation masonry with increased displacement ductility. SIM allows relative sliding of brick courses in-plane and prevents out-of-plane relative displacement of bricks. SIM has already been studied as infill panels. This paper aims to combine semi-interlocking masonry with confined masonry system and introduce the new system; which is called confined semi-interlocking masonry (confined SIM or CSIM). CSIM is intended to be used in developing countries in which the construction facilities are simple. In this regard, after initial theoretical and analytical studies, design criteria are presented to verify the capability of buildings with confined SIM system as an alternative for buildings with conventional confined masonry system. It is believed that confined masonry and semi-interlocking system are complementary and their combination could be an improvement on the currently used confined masonry.
    Keywords: confined masonry; semi-interlocking masonry; in-plane shear capacity; confining elements; and earthquake performance.

  • In-Plane Stiffening and Strengthening of Timber Floors for the Improvement of Seismic Behaviour of URM Buildings   Order a copy of this article
    by Margarida Nunes, Rita Bento, Mário Lopes 
    Abstract: The seismic vulnerability of unreinforced masonry (URM) buildings is strongly influenced by the strength and stiffness of timber floors. In fact, it is well-recognized that an adequate in-plane stiffness of the floors and of the connections between the floors and the walls can improve the three-dimensional response of masonry buildings. In this work, a steel strengthening solution is proposed to improve the in-plane stiffness of timber floors. The solution consists of placing underneath the wooden floors a steel grid of thin plates and angles at the perimeter to connect to the walls of the existing building. The connections between steel elements were done with screws. The strengthening solution proposed was numerically modelled in SAP 2000. Furthermore, to check the performance of this solution an experimental investigation was conducted. A cyclic shear test was carried out on a real scale timber floor strengthened with the steel structure proposed. This test allowed the evaluation of the failure mode, forcedisplacement diagrams, and of various behavioural parameters such as floor resistance and in-plane stiffness. The experimental cyclic test, showed that the strengthened timber floor considerably increased the floor resistance and in-plane stiffness. A proposal to model the stiffening solution is offered.
    Keywords: Horizontal diaphragms; Timber floor; Experimental test; In-plane stiffness; retrofit of URM buildings.

  • Natural properties of confined masonry buildings - experimental case studies and possible inferences   Order a copy of this article
    by Harshit Nema, Dhiman Basu 
    Abstract: Construction of faculty housing and student-s hostels in a fully-residential 400-acre academic campus of Indian Institute of Technology Gandhinagar (IITGN) in the State of Gujarat, India is the first large scale confined masonry construction in the country. Knowledge of dynamic properties of these buildings will provide valuable inputs to the seismic design recommendations of confined masonry buildings. Ambient and forced vibration tests (AVT and FVT) are conducted in some of the constructed buildings for the natural period and damping ratio. This paper presents the details of such case studies and compares the experimental results with general expectation considering reinforced concrete buildings with in filled masonry wall as the basis. Also recommended in this paper are some of the fines tunings in the experimental framework of conducting AVT and FVT, and processing the recorded data to identify the natural frequency with greater confidence level.
    Keywords: ambient vibration testing; AVT; forced vibration testing; FVT; confined masonry buildings; dynamic properties.
    DOI: 10.1504/IJMRI.2019.10019399
     
  • A limit analysis approach for masonry domes: the basilica of San Francesco di Paola in Naples   Order a copy of this article
    by Claudia Cennamo, Concetta Cusano, Maurizio Angelillo 
    Abstract: The object of the present study is the basilica of San Francesco di Paola, an historical structure that well lends itself to use the graphic method of statics to analyse its stability for a two-fold reason: on the one hand, it is an interesting structure being dominated by a dome of considerable size with a solid appearance, and on the other, it is an entirely masonry structure for which no consolidation interventions with different materials have been necessary so far. This paper applies limit analysis based on the geometric equilibrium of the dome starting from detailed surveys of the church, from the knowledge of its history construction to the comprehension of the entire building. The study carried out enriches previous researches developed around the same case study, and the new contribution is integrated by the analysis of stability of the buttress system that completes the work on the vertical loads, providing a more detailed assessment of the safety level of the structure.
    Keywords: masonry domes behaviour; limit analysis; safety evaluation.
    DOI: 10.1504/IJMRI.2019.10019401
     
  • Monotonic tests on masonry elements with different angles of inclination of the bed joints under uniaxial compression   Order a copy of this article
    by Marius Weber, Akanshu Sharma, Jan Hofmann 
    Abstract: This paper describes the results from monotonic tests performed on masonry elements with different angles of inclination of the bed joints relative to the horizontal under uniaxial compression. Two different types of bricks (calcium-silicate and clay bricks) were tested under uniaxial compression stress state. The main test parameter was the angle of inclination of the bed joints, which was varied between 0 and 90 degrees in the interval of 15 degrees. The tests were performed in displacement control in order to capture the post-peak response of the masonry elements as well. The applied displacements were increased monotonically. During the tests, main measurements were performed to measure the edge deformation, detection of strain on the masonry surface using a photogrammetric method, and documentation of the crack propagation and fracture behaviour. The strength and the stiffness properties, as well as stress-strain relationships as a function of the angle of inclination of the bed joints and the comparison between the principle directions of stresses and strains is reported here.
    Keywords: compression test; inclined bed joints; monotonic loading; macromodel.
    DOI: 10.1504/IJMRI.2019.10019404
     
  • Validation of a two-step simplified compatible homogenisation approach extended to out-plane loaded masonries   Order a copy of this article
    by Elisa Bertolesi, Luis Carlos Silva, Gabriele Milani 
    Abstract: A two-step homogenisation model, formulated by the authors for the in-plane case, is herein extended for the nonlinear out-of-plane analysis of masonry structures. A rectangular running bond elementary cell is discretised by 24 elastic CST elements and inelastic zero-thickness interfaces. The mechanical meso-scale problem is briefly recalled, whereas the out-of-plane homogenised behaviour is evaluated by means of a simple on-thickness integration of the in-plane homogenised curves. At a macro-scale, the rigid body and spring model is slightly modified to allow both flexural and torsional failure mechanisms. The validation of the numerical approach is achieved comparing with some full-scale masonry panels tested in two-way bending up to failure. A series of nonlinear structural analyses are conducted considering different parameters, which have been varied during the experimental campaign. The numerical results are promising and demonstrate the capability to deal with different failure mechanisms as result of a combination of various experimental aspects.
    Keywords: masonry; in-plane loads; out of plane loads; semi-analytical approach; compatible model of homogenisation.
    DOI: 10.1504/IJMRI.2019.10019407
     

Special Issue on: 6th ICAAC Performance and Reliability of AAC Masonry against Seismic Hazard

  • Seismic out-of-plane behaviour of unreinforced AAC walls   Order a copy of this article
    by Moritz Lönhoff, Hamid Sadegh-Azar 
    Abstract: Autoclaved aerated concrete (AAC) is a building material widely used in many countries around the world. In addition to the design for static loads, unreinforced masonry (URM) walls must also be designed for earthquake scenarios. In this load case, the out-of-plane loads (transverse to the plane) often have a significant impact on the load-bearing capacity. In most practical applications, simplified analytical methods are used to determine the out-of-plane capacity of URM walls. The estimations of these models are often inaccurate since essential parameters are neglected. To determine the out-of-plane capacity realistically, parameters like vertical stiffness of the support, geometry, constraints, vertical loads and dynamic effects must be taken into account. To investigate the influence of these parameters, shaking-table tests were performed at the [to be added after review]. Real earthquake time histories were applied and the amplitude has been increased until collapse of the wall. For the simplified numerical analyses of the deformation response of the wall, robust nonlinear single-degree-of-freedom systems are used. In addition, results from analytical models are compared with experimentally determined maximum acceptable earthquake accelerations. The comparison shows that the out-of-plane capacity is much higher than predicted by analytical models. The experimental, analytical and simplified numerical investigations on unreinforced AAC walls will be used to develop a simple and practical applicable engineering model in the next phase of the project.
    Keywords: out-of-plane behaviour; shaking-table tests.

  • Damage assessment of autoclaved aerated concrete buildings: some Italian case studies   Order a copy of this article
    by Daniele Ferretti, Elena Michelini, Nicola Pongiluppi, Roberto Cerioni 
    Abstract: The present work deals with the damage assessment of some Italian case studies of structures/walls realized in autoclaved aerated concrete (AAC) blocks. Initially, examples of static damage of walls caused by excessive deformability of the slabs, differential loads on walls, and foundation settlements, are shown. Then, the seismic behaviour of AAC masonry buildings is analysed. In particular, the behaviour of two pre-seismic code buildings damaged by the Emilia 2012 earthquake is described and compared with modern engineered buildings. Then, the behaviour of non-structural walls damaged by the Central Italy 2016 earthquake is reported. Very few case studies focusing on the damage assessment of AAC masonry buildings during real seismic events can be found in the literature. This work provides an opportunity to advance our knowledge on the behaviour of this material.
    Keywords: AAC; damage assessment; 2012 Emilia’s earthquake; 2016 Central Italy’s earthquake; masonry; AAC partitions and infills; shear cracks; sub-vertical cracks; vulnerability; seismic design.

  • Seismic resistant AAC infill masonry: state-of-the art and future developments   Order a copy of this article
    by Lorenzo Miccoli 
    Abstract: This paper aims to provide an overview on the seismic behaviour of infill walls made by blocks of aerated autoclaved concrete, according to the available literature. Experimental results on the in-plane cyclic performance of infill walls are presented. In addition, numerical simulations of the infill-structure response according to linear and non-linear static methods are reported. In the last section, experimental and numerical studies on how the infill walls influence the structural behaviour are shown. Recent studies on seismic isolated masonry infills have shown that damages are more serious for fully infilled test samples than for the isolated ones. Although the discussion on out-of-plane stability and strength of isolated infill is still open, the development of solutions able to assure the isolation of infill walls respect to structural frame seem to be the most promising in terms of damage prevention of the building.
    Keywords: aerated autoclaved concrete; in-plane behaviour; infill-structure interaction; dynamic behaviour; finite element modelling.

Special Issue on: 10IMC Masonry Research in the Third Millennium From Theory to Practical Applications

  • Four years of Structural Health Monitoring of the San Pietro Bell Tower in Perugia, Italy: two years before the earthquake versus two years after   Order a copy of this article
    by Pier Francesco Giordano, Filippo Ubertini, Nicola Cavalagli, Alban Kita, Maria Giovanna Masciotta 
    Abstract: This paper addresses the Structural Health Monitoring (SHM) of the bell tower of the Basilica of San Pietro in Perugia, Italy, which is located in a seismic area. Known as one of the landmarks of the Umbrian capital, the tower belongs to a monumental complex of exceptional historical and cultural value. Therefore, its protection with respect to earthquakes is an important issue. To this purpose, a vibration-based SHM system able to detect anomalies in the structural behaviour by means of statistical process control tools has been installed in the tower and is under continuous operation since December 2014. The effects of the 2016-2017 Central Italy seismic sequence were clearly detected by this system, even if earthquakes took place at relatively large distance from the bell tower. The large amount of SHM data collected over four years allowed to assess the modifications in the structural behaviour of the bell tower in post-earthquake conditions.
    Keywords: structural health monitoring; operational modal analysis; post-earthquake assessment; heritage structures; preservation of architectural heritage.