Forthcoming articles

International Journal of High Performance Computing and Networking

International Journal of High Performance Computing and Networking (IJHPCN)

These articles have been peer-reviewed and accepted for publication but are pending final changes, are not yet published and may not appear here in their final order of publication until they are assigned to issues. Therefore, the content conforms to our standards but the presentation (e.g. typesetting and proof-reading) is not necessarily up to the Inderscience standard. Additionally, titles, authors, abstracts and keywords may change before publication. Articles will not be published until the final proofs are validated by their authors.

Forthcoming articles must be purchased for the purposes of research, teaching and private study only. These articles can be cited using the expression "in press". For example: Smith, J. (in press). Article Title. Journal Title.

Articles marked with this shopping trolley icon are available for purchase - click on the icon to send an email request to purchase.

Register for our alerting service, which notifies you by email when new issues are published online.

Open AccessArticles marked with this Open Access icon are freely available and openly accessible to all without any restriction except the ones stated in their respective CC licenses.
We also offer which provide timely updates of tables of contents, newly published articles and calls for papers.

International Journal of High Performance Computing and Networking (9 papers in press)

Regular Issues

  • Distributed software defined information centric networking   Order a copy of this article
    by Rihab Jmal, Lamia Chaari Fourati 
    Abstract: Recently, a new trend has emerged based on combining Software Defined Networking (SDN) and Information Centric Networking (ICN) as a promising approach for the future Internet. More serious control plane problems related to scalability, fault-tolerance and consistency may confront Software Defined Information Centric Networking (SD-ICN) compared with the traditional SDN environment, regarding new augmented features such as content name based communication and in-network caching. In this paper, we propose a Distributed Software Defined Information Centric Networking (DSD-ICN) that provides ICN features over SDN network with multiple controllers. We address in our design the fault-tolerant and strong consistency of the control plane, which allows the transparent distribution of the content over different network domains.
    Keywords: software defined networking; information-centric networking; multiple controllers; inter-domain; distributed.

  • Multi-model coupling method for imbalanced network traffic classification based on clustering   Order a copy of this article
    by Zhengzhi Tang 
    Abstract: The identification of network traffic is of great significance for traffic management, billing and security detection. However, the imbalanced category of traffic in network poses a challenge to the current identification methods based on machine learning, because the unbalanced data structure affects the performance of machine learning algorithms. In this paper, we propose a multi-model coupling approach to address the imbalanced data problem in network traffic classification. In the training state, we used a clustering algorithm to process the major class and the major class can be categorised into some clusters. Then, we used these clusters and the minor class to form the training dataset for training machine learning model respectively, and finally the corresponding different trained models were obtained. In the test state, the test dataset was input into the previously trained models, and the identification results of the respective models are coupled to obtain the final identification result. We tested our method on two well-known network traffic datasets and the results showed that our proposed method achieved better performance and in shorter time compared with recent proposed methods for handling imbalance problem in network traffic classification in the case where the ratio of minor to major classes is very small.
    Keywords: machine learning; imbalanced network traffic classification; clustering algorithm; multi-model coupling.

  • Device classification-based data encryption for the internet of things   Order a copy of this article
    by Rishabh Rishabh, T.P. Sharma 
    Abstract: The Internet of Things (IoT) has gained much popularity and has become an essential topic of research, because of its vast implementation in smart cities, smart homes, wearables, and smart appliances. It has emerged as a field of great potential, impact, and growth. Another reason for its popularity and growth is that it incorporates various heterogeneous sensors and objects to communicate with one another directly, without including the need for human intervention. As IoT enables the low resource and constrained devices to work, they also become more vulnerable to attacks than other endpoint devices. Although IoT has several privacy concerns and security issues, it still is growing in demand for large-scale deployment. In this paper, we propose class-specific data encryption/decryption techniques for heterogeneous IoT devices. Devices are classified into three classes, based on their computational and communication capabilities. Accordingly, different schemes for data encryption/decryption are proposed at different levels of interconnection across devices of different classes. The classification makes it easy to develop, study and analyse the behaviour of the devices, as the devices of the same class have similar properties and performance. It also helps to develop standards of security protocols, policies, and frameworks based on the device class. Simulation experiments reveal significant improvements in the solution of encryption/decryption techniques for given scenarios.
    Keywords: internet of things; security; challenges; issues; threats; privacy.

  • PFSS: a privacy-friendly and secure smart metering for time of use operational data collection in a smart grid network   Order a copy of this article
    by Oladayo Olakanmi 
    Abstract: Advanced metering infrastructure (AMI) is an integral part of a smart grid network which involves transmission of finest grain operational data of consumers' load profiles on wireless facilities. These operational data are used for effective load balancing, billing, and analysis of the smart grid network. Unauthorised access to these operational data can easily disrupt the smart grid network or create distrust among consumers. Meanwhile, the vulnerabilities of AMI wireless facilities encourage unauthorised access to this sensitive information, making AMI a soft target for adversaries in the smart grid network. Many security schemes have been proposed for AMI to detect and prevent attacks in order to achieve the required security and privacy properties expected. However, some of them only focus on specific attack(s), leaving other attacks, and most of them cannot be efficiently used to secure energy profiles from different time of use without increasing communication overhead. In this paper, a provably lightweight security scheme to secure metering and information exchange, and consumers privacy, irrespective of the attacking points and nature of the attacks is proposed for AMI. To achieve this, we developed a chain-based pseudonym and shadow key approach to preserve privacy. We also develop low-cost cryptographic approach using Shamir secret sharing to evolve effective grouping and authentication approaches that classify consumers energy profiles based on time of use. Our scheme ensures data security and cooperative aggregation among m number of consumers of the same service provider. The security analysis and performance evaluation of the scheme are also presented. The results illustrate that the approach secures metering at a low computational overhead.
    Keywords: smart grid; operational data; time of use; aggregation; metering.

  • A rack-aware scalable resource management system for Hadoop YARN   Order a copy of this article
    by Timothy Moses, H.C. Inyiama, S.O. Anigbogu 
    Abstract: Big data has brought in an era of data exploration and use with MapReduce computational paradigm as its major enabler. Though great efforts through the implementation of Hadoop have made computation scale to tens of thousands of commodity cluster processors, the centralised architecture of the resource manager has adversely affected response time in large datacentres. Decentralising the responsibilities of the resource manager to address scalability issues of Hadoop for better response time and to eliminate single point of failure is, therefore, the concern of this work. The developed model decouples the responsibilities of the resource manager by providing another layer where each daemon called Rack_Unit Resource Manager (RU_RM) carries out the responsibility of allocating resources to compute nodes within its local rack. This ensures low latency for large files on compute nodes within the same local rack. The application was developed and tested using Java programming language with Hadoop workload benchmarks such as sort, WordCount, TeraSort, PageRank, Na
    Keywords: MapReduce; Hadoop; framework; scalable; rack-aware; resource manager; big data; rack unit resource manager.

  • BAT algorithm used for load balancing purpose in cloud computing: an overview   Order a copy of this article
    by Arif Ullah 
    Abstract: Cloud computing is modern technology that has caused significant changes in different fields of life by providing different kinds of service, such as hardware and software on user demands based on pay and gain rule. Owing to the rapid growth of cloud computing, it faces different kinds of issue, and resource allocation is one of them. For the improvement of the resource allocation system in cloud computing, different kinds of technique are used, including the load balancing technique. In this paper, we discuss the resource allocation system in virtual machines (VM) because when a user sends data to a VM then the situation may occur that some VMs are overloaded and some become underloaded, which will cause the system to fail or delay the request. To improve this situation different researchers used different algorithms in the load balancing technique for cloud computing. This paper only focuses on the BAT algorithm, which is used for load balancing technique to improve resource allocation system for VMs and also to define those rules that are used for improvement of the load balancing technique in cloud data centres.
    Keywords: load balancing; cloud computing; classification; BAT algorithm; virtual machine; virtualisation.

  • Cloud provider profit-aware and triadic concept analysis-based data replication strategy for tenant performance improvement   Order a copy of this article
    by Amel Khelifa, Tarek Hamrouni, Riad Mokadem, Faouzi Ben Charrada 
    Abstract: Effective data management is very challenging to cloud providers, whose business model relies on maintaining an economic profit while satisfying the tenants performance requirements. To address these challenges, many data replication strategies have been proposed. In this paper, we propose a new dynamic data replication strategy for cloud systems called RCPP.1 In order to satisfy performance requirements, the proposed strategy exploits the valuable knowledge extracted from the tenants past access history. Therefore, it uses the mathematical triadic concept analysis approach to determine correlated data to be replicated. Furthermore, the cloud providers profit is taken into account. Hence, an economic model is proposed to estimate the revenues and expenditures of the provider. Experimental studies show the efficiency and effectiveness of RCPP compared with state-of-the-art strategies. RCPP is indeed proven able to reduce the total expenditures of the cloud provider significantly while achieving better performance.
    Keywords: replication; cloud provider; data correlation; profit; economic model; triadic concept.

  • XtremDew: a platform for cooperative tasks and data schedulers   Order a copy of this article
    by Mohamed Labidi, Oleg Lodygensky, Gilles Fedak, Maher Khemakhem, Mohamed Jemni 
    Abstract: With the emergence of Big Data, data scheduling is becoming an important field of research in distributed computing. Software data schedulers often rely on data management policies that can be defined by the user and provide high level features. Such advanced features become necessary nowadays to execute data-intensive applications, and this implies that data and task schedulers should cooperate closely to address the large data processing issue and ensure an optimal distribution of data-intensive applications. In this paper, we propose XtremDew, the data and task cooperative scheduler platform. We deal with the distribution of the optical character recognition (OCR) on a large scale. We show, in particular, the benefit of the focus on data scheduling to distribute our OCR application. We build the data-driven distributing platform by combining two existing middleware: BitDew, as the data scheduler, and XtremWeb-HEP, as the task scheduler. Taking advantage of both middleware, XtremDew provides new features. To evaluate the efficiency of our approach, we compare different strategies of scheduling tasks and data and we present several scenarios that illustrate the benefits of using XtremDew to execute data-intensive applications.
    Keywords: Big Data; data-intensive application; cooperative middleware; complexity and performance of big data processing.

  • A novel secure routing protocol of generation and management cryptographic keys for wireless sensor networks deployed in the internet of things   Order a copy of this article
    by Wassim Jerbi, Abderrahmen Guermazi, Hafedh Trabelsi 
    Abstract: The traffic expected in the network corresponds mainly to data generated by the sensors and extracted outside the network. The communication medium is a wireless medium of variable characteristics. Sensors are lightweight platforms, with limited computing power and energy reserves, and where the radio is a resource to be saved. However, our article is all about creating a secure routing protocol that provides reliable communications. The Crypto-ECC contributions seek to accelerate the computation of scalar multiplications by using the paralleling technique, which consists of distributing the calculation into several independent tasks that can be processed simultaneously by different nodes. This submission tries to design a secure multicast of a new routing protocol Crypto-ECC, which allows the generation and management of cryptographic keys and that takes into account the constraints of the wireless sensor networks and the internet of things. Finally, the proposed solution will be evaluated using Telosb sensors, and compared with earlier work. Performance evaluation using the TOSSIM simulator shows that Crypto-ECC is scalable, provides excellent key connectivity, and clearly shows remarkable efficiency in the creation of secure links. We observe that only around 1.14 seconds are needed to attain the cryptography within a network containing 1000 nodes, and it has excellent connectivity for adding secure nodes and performs all the calculations of adding a secure nodes in less than 3 seconds
    Keywords: IoT; WSNs; routing protocol; Crypto-ECC; clustering; connectivity; energy consumption.