Forthcoming articles

International Journal of Grid and Utility Computing

International Journal of Grid and Utility Computing (IJGUC)

These articles have been peer-reviewed and accepted for publication but are pending final changes, are not yet published and may not appear here in their final order of publication until they are assigned to issues. Therefore, the content conforms to our standards but the presentation (e.g. typesetting and proof-reading) is not necessarily up to the Inderscience standard. Additionally, titles, authors, abstracts and keywords may change before publication. Articles will not be published until the final proofs are validated by their authors.

Forthcoming articles must be purchased for the purposes of research, teaching and private study only. These articles can be cited using the expression "in press". For example: Smith, J. (in press). Article Title. Journal Title.

Articles marked with this shopping trolley icon are available for purchase - click on the icon to send an email request to purchase.

Register for our alerting service, which notifies you by email when new issues are published online.

Open AccessArticles marked with this Open Access icon are freely available and openly accessible to all without any restriction except the ones stated in their respective CC licenses.
We also offer which provide timely updates of tables of contents, newly published articles and calls for papers.

International Journal of Grid and Utility Computing (81 papers in press)

Regular Issues

  • Research on regression test method based on multiple UML graphic models   Order a copy of this article
    by Mingcheng Qu, Xianghu Wu, Yongchao Tao, Guannan Wang, Ziyu Dong 
    Abstract: Most of the existing graph-based regression testing schemes aim at a given UML graph and are not flexible in regression testing. This paper proposes a method of a universal UML for a variety of graphical model modifications, and obtains a UML graphics module structure modified regression testing that must be retested, determined by the domain of influence analysis on the effect of UML modification on the graphical model test case generated range analysis, finally re auto generate test cases. This method has been proved to have a high logical coverage rate. In order to fully consider all kinds of dependency, it cannot limit the type modification of UML graphics, and has higher openness and comprehensiveness.
    Keywords: regression testing; multiple UML graphical models; domain analysis.

  • A real-time matching algorithm using sparse matrix   Order a copy of this article
    by Aomei Li, Wanli Jiang, Po Ma, Jiahui Guo, Weihua Yuan, Dehui Dai 
    Abstract: Aiming at the shortcomings of the traditional image feature matching algorithm, which is computationally expensive and time-consuming, this paper presents a real-time feature matching algorithm. Firstly, the algorithm constructs sparse matrices by Laplace operator and the Laplace weighting is carried out. Then, the feature points are detected by the FAST feature point detection algorithm. The SURF algorithm is used to assign the direction and descriptor to the feature for rotation invariance, We then use the Gaussian pyramid to make it scalable invariance. Secondly, the match pair is extracted by the violent matching method, and the matching pair is purified by Hamming distance and symmetry method. Finally, the RANSAC algorithm is used to get the optimal matrix, and the affine invariance check is used to match the result. The algorithm is compared with the classical feature point matching algorithm, which proves that the method has high real-time performance under the premise of guaranteeing the matching precision.
    Keywords: sparse matrices; Laplace weighted; FAST; SURF; symmetry method; affine invariance check.

  • How do checkpoint mechanisms and power infrastructure failures impact on cloud applications?   Order a copy of this article
    by Guto Leoni Santos, Demis Gomes, Djamel Sadok, Judith Kelner, Elisson Rocha, Patricia Takako Endo 
    Abstract: With the growth of cloud computing usage by commercial companies, providers of this service are looking for ways to improve and estimate the quality of their services. Failures in the power subsystem represent a major risk of cloud data centre unavailability at the physical level. At same time, software-level mechanisms (such as application checkpointing) can be used to maintain the application consistency after a downtime and also improve its availability. However, understanding how failures at the physical level impact on the application availability, and how software-level mechanisms can improve the data centre availability is a challenge. This paper analyses the impact of power subsystem failures on cloud application availability, as well as the impact of having checkpoint mechanisms to recover the system from software-level failure. For that, we propose a set of stochastic models to represent the cloud power subsystem, the cloud application, and also the checkpoint-based retrieval mechanisms. To evaluate data centre performance, we also model requests arrival and time to process as a queue, and feed this model with real data acquired from experiments done in a real testbed. To verify which components of the power infrastructure most impact on the data centre availability we perform sensitivity analysis. The results of the stationary analysis show that the selection of a given type of checkpoint mechanism does not present a significant impact on the observed metrics. On the other hand, improving the power infrastructure implies performance and availability gains.
    Keywords: cloud data centre; checkpoint mechanisms; availability; performance; stochatic models.

  • A novel web image retrieval method: bagging weighted hashing based on local structure information   Order a copy of this article
    by Li Huanyu 
    Abstract: Hashing is widely used in ANN searching problems, especially in web image retrieval. A excellent hashing algorithm can help the users to search and retrieve their web images more conveniently, quickly and accurately. In order to conquer several deficiencies of ITQ in image retrieval problem, we use ensemble learning to deal image retrieval problem. A elastic ensemble framework has been proposed to guide the hashing design, and three important principles have been proposed, named high precision, high diversity, and optimal weight prediction. Basing on this, we design a novel hashing method called BWLH. In BWLH, first, the local structure information of the original data is extracted to construct the local structure data, thus to improve the similarity-preserve ability of hash bits. Second, a weighted matrix is used to balance the variance of different bits. Third, bagging is exploited to expand diversity in different hash tables. Sufficient experiments show that BWLH can handle the image retrieval problem effectively, and perform better than several state-of-the-art methods at same hash code length on dataset CIFAR-10 and LabelMe. Finally, search by image, a web-based use case scenario of the proposed hashing BWLH, is given to detail how the proposed method can be used in a web-based environment.
    Keywords: web image retrieval; hashing; ensemble learning; local structure information; weighted.

  • An integrated incentive and trust-based optimal path identification in ad hoc on-demand multipath distance vector routing for MANET   Order a copy of this article
    by Abrar Omar Alkhamisi, Seyed M. Buhari, George Tsaramirsis, Mohammed Basheri 
    Abstract: A Mobile Ad hoc Network (MANET) can exist and work well only when the mobile nodes behave cooperatively in packet routing. To reduce the hazards from malicious nodes and enhance the security of the network, this paper extends an Adhoc On-Demand Multipath Distance Vector (AOMDV) routing protocol, named as An Integrated Incentive and Trust based optimal path identification in AOMDV (IIT-AOMDV) for MANET. To improve the security and reliability of packet forwarding over multiple routes in the presence of potentially malicious nodes, the proposed IIT-AOMDV routing protocol integrates an Intrusion Detection System (IDS) with the Bayesian Network (BN) based trust and payment model. The IDS uses the empirical first- and second-hand trust information of BN, and it underpins the cuckoo search algorithm to map the QoS and trust value into a single fitness metric, tuned according to the presence of malicious nodes in the network. Moreover, the payment system stimulates the nodes to cooperate in routing effectively and improves the routing performance. Finally, the simulation results show that the IIT-AOMDV improves the detection accuracy and throughput by 20% and 16.6%, respectively, more than that of existing AOMDV integrated with the IDS (AID).
    Keywords: mobile ad hoc network; intrusion detection system; trust; attack; optimal path identification; isolation.

  • Detection and mitigation of collusive interest flooding attack on content centric networking   Order a copy of this article
    by Tetsuya Shigeyasu, Ayaka Sonoda 
    Abstract: According to the development of ICT (Information and Communications Technology), deployments of consumer devices, such as note PC, smartphone, and other information devices, make it easy for users to access to the internet. Users having these devices use services of e-mail and SNS (Social Network Service). NDN (Named Data Networking), which is the most popular network architecture, has been proposed to realise the concept of CCN. However, it has been also reported that the NDN is vulnerable to CIFA (Collusive Interest Flooding Attack). In this paper, we propose a novel distributed algorithm for detecting CIFA for keeping availabilities of NDN. The results of computer simulations confirm that our proposal can detect and mitigate the effects of CIFA, effectively.
    Keywords: named data networking; content centric data acquisition; collusive interest flooding attack; malicious prediction.

  • A new overlay P2P network for efficient routing in group communication with regular topologies   Order a copy of this article
    by Abdelhalim Hacini, Mourad Amad 
    Abstract: This research paper gives a new overlay P2P network to provide a performant and optimised lookup process. The lookup process of the proposed solution reduces the overlay hops and consequently the latency for content lookup, between any pair of nodes. The overlay network is constructed on top of physical networks without any centralised control and with a hierarchy of two levels. The architecture is based on regular topologies, which are the pancake graphs and the skip graphs. The focus of all topology construction schemes is to reduce the cost of the lookup process (number of hops and delay) and consequently improve the search performance for P2P applications deployed on the overlay network. Performance evaluations of our proposed scheme show that results obtained are globally satisfactory.
    Keywords: P2P networking; pancake graphs; skip graphs; routing optimisation.

  • A smart networking and computing-aware orchestrator to enhance QoS on cloud-based multimedia services   Order a copy of this article
    by Rodrigo Moreira, Flavio Silva, Pedro Frosi Rosa, Rui Aguiar 
    Abstract: Rich-media applications deployed on cloud lead the use of the internet by people and organisations around the world. Networking and computing resource management has become an important requirement to achieve high user QoS. The advent of software-defined networking and networking function virtualisation brings new possibilities to address carrier environment challenges making QoS enhancement possible. The literature does not show a smart and flexible solution that brings scalability with a holistic view of networking and computing resources taking into account different ways to enhance QoS. In this work, we present a smart orchestrator capable of interacting with the network and computing resources and applications hosted on a cloud. By providing support to different ML algorithms, our solution provides better QoS by improvements in aspects such as network resilience, bandwidth allocation based on real-time traffic patterns, and end-to-end QoS mechanism to event-driven scenarios. The solution interacts in an agnostic way with different applications, cloud operating systems, and the network. As a separate control plane entity, the orchestrator is capable of operating across different domains. The solution orchestrates applications, virtual functions, and cloud resources, providing elastic and network enhancing QoS. Our experimental evaluation in a large-scale testbed shows the orchestrator's capability to provide a smart jitter decrease using AI techniques.
    Keywords: software-defined networking; network function virtualisation; QoS; machine learning; cloud computing.

  • Hardware support for thread synchronisation in an experimental manycore system   Order a copy of this article
    by Alessandro Cilardo, Mirko Gagliardi, Daniele Passaretti 
    Abstract: This paper deals with the problem of thread synchronisation in manycore systems. In particular, it considers the open-source GPU-like architecture developed within the MANGO H2020 project. The thread synchronisation hardware relies on a distributed master and on a lightweight control unit to be deployed within the core. It does not rely on memory access for exchanging synchronisation information since it uses hardware-level messages. The solution supports multiple barriers for different application kernels possibly being executed simultaneously. The results for different NoC sizes provide indications about the reduced synchronisation times and the area overheads incurred by our solution.
    Keywords: networks on chip; synchronisation; manycore systems.

  • Identifying journalistically relevant social media texts using human and automatic methodologies   Order a copy of this article
    by Nuno Guimaraes, Filipe Miranda, Alvaro Figueira 
    Abstract: Social networks have provided the means for constant connectivity and fast information dissemination. In addition, real-time posting allowed a new form of citizen journalism, where users can report events from a witness perspective. Therefore, information propagates through the network at a faster pace than traditional media reports it. However, relevant information is a small percentage of all the content shared. Our goal is to develop and evaluate models that can automatically detect journalistic relevance. To do it, we need solid and reliable ground-truth data with a significantly large amount of annotated posts, so that the models can learn to detect relevance in all its spectrum. In this article, we present and confront two different methodologies: an automatic and a human approach. Results on a test dataset labelled by experts show that the models trained with automatic methodology tend to perform better in contrast to the ones trained using human annotated data.
    Keywords: relevance detection; machine learning; text mining; crowdsourcing task.

  • Dijkstra algorithm based ray tracing for tunnel-Like structures   Order a copy of this article
    by Kazunori Uchida 
    Abstract: This paper deals with ray tracing in a closed space, such as tunnel or underground, by using a newly developed simulation method based on the Dijkstra algorithm (DA). The essence of this method is to modify the proximity-node matrix obtained by DA in terms of three procedures, path-selection, path-linearisation and line of sight (LOS) check. The proposed method can be applied to ray tracing in complicated structures ranging from an open space such as random rough surface (RRS) or urban area to a closed space such as tunnel or underground. In case of a closed space, however, more detailed discussions are required than in case of an open space, since especially at a grazing angle of incidence, we have to take account of the effects of floor, ceiling and side walls not only locally but also globally. In this paper we propose an effective procedure for LOS check to solve this difficult situation. Numerical examples are shown for traced rays as well as total link-cost distributions in sinusoidal and cross-type tunnels.
    Keywords: Dijkstra algorithm; discrete ray tracing; LOS check; propagation in closed space.

  • Implementation of a high presence immersive traditional crafting system with remote collaborative work support   Order a copy of this article
    by Tomoyuki Ishida, Yangzhicheng Lu, Akihiro Miyakawa, Kaoru Sugita, Yoshitaka Shibata 
    Abstract: A high presence immersive traditional crafting system was developed to provide users, who interact with the system through head-mounted displays, with a highly realistic traditional crafting presentation experience that allows moving functions, such as free walk-through and teleportation. Users can also interactively operate traditional craft objects in space. In addition, the system supports collaborative work in a virtual space shared by remote users. To evaluate the effectiveness of this system, a questionnaire survey was administered to 124 subjects, who provided overwhelmingly positive responses regarding all functions. However, there is still room for improvement in the operability and relevancy of the system.
    Keywords: collaborative virtual environment; head-mounted display; Japanese traditional crafts; interior simulation.

  • A configurable and executable model of Spark Streaming on Apache YARN   Order a copy of this article
    by Jia-Chun Lin, Ming-Chang Lee, Ingrid Chieh Yu, Einar Broch Johnsen 
    Abstract: Streams of data are produced today at an unprecedented scale. Efficient and stable processing of these streams requires a careful interplay between the parameters of the streaming application and of the underlying stream processing framework. Today, finding these parameters happens by trial and error on the complex, deployed framework. This paper shows that high-level models can help to determine these parameters by predicting and comparing the performance of streaming applications running on stream processing frameworks with different configurations. To demonstrate this approach, this paper considers Spark Streaming, a widely used framework to leverage data streams on the fly and provide real-time stream processing. Technically, we develop a configurable and executable model to simulate both the streaming applications and the underlying Spark stream processing framework. Furthermore, we model the deployment of Spark Streaming on Apache YARN, which is a popular open-source distributed software framework for big data processing. We show that the developed model provides a satisfactory accuracy for predicting performance by means of empirical validation.
    Keywords: modelling; simulation; Spark Streaming; Apache YARN; batch processing; stream processing; ABS.

  • Models for hyper-converged cloud computing infrastructure planning   Order a copy of this article
    by Carlos Melo, Jamilson Dantas, Jean Araujo, Paulo Maciel, Rubens Matos, Danilo Oliveira, Iure Fé 
    Abstract: The data centre concept has evolved, mainly due to the need to reduce expenses with the required physical space to store, provide and maintain large computational infrastructures. The software-defined data centre (SDDC) is a result of this evolution. Through SDDC, any service can be hosted by virtualising more reliable and easier-to-keep hardware resources. Nowadays, many services and resources can be provided in a single rack, or even a single machine, with similar availability, considering the deployment costs of silo-based environments. One of the ways to apply the SDDC into a data centre is through hyper-convergence. Among the main contributions of this paper are the behavioral models developed for availability and capacity-oriented availability evaluation of silo-based, converged and hyper-converged cloud computing infrastructures. The obtained results may help stakeholders to select between converged and hyper-converged environments, owing to their similar availability but with the particularity of having lower deployment costs.
    Keywords: Hyper-convergence; Dependability Models; Dynamical Reliability Block Diagrams; SDDC; DRBD; virtualisation; capacity-oriented availability; deployment cost; redundancy; cloud computing; OpenStack.

  • Architecture for diversity in the implementation of dependable and secure services using the state machine replication approach   Order a copy of this article
    by Caio Costa, Eduardo Alchieri 
    Abstract: The dependability and security properties of a system could be impaired by a system failure or by an opponent that exploits its vulnerabilities, respectively. An alternative to mitigate this risk is the implementation of fault- and intrusion-tolerant systems, in which the system properties are ensured even if some of its components fail (e.g., because a software bug or a failure in the runtime environment) or are compromised by a successful attack. State Machine Replication (SMR) is widely used to implement these systems. In SMR, servers are replicated and client requests are deterministically executed in the same order by all replicas in a way that the system behaviour remains correct even if some of them are compromised since the correct replicas mask the misbehaviour of the faulty ones. Unfortunately, the proposed solutions for SMR do not consider diversity in the implementation and all replicas execute the same software. Consequently, the same attack or software bug could compromise all the system. Trying to circumvent this problem, this work proposes an architecture to allow diversity in the implementation of dependable and secure services using the SMR approach. The goal is not to implement different versions of a SMR library for different programming languages, which demands a lot of resources and is very expensive. Instead, the proposed architecture uses an underlying SMR library and provides means to implement and execute service replicas (the application code) in different programming languages. The main problems addressed by the proposed architecture are twofold: (1) communication among different languages; and (2) data representation. The proposed architecture was integrated in the SMR library BFT-SMaRt and a set of experiments showed its practical feasibility.
    Keywords: diversity; security; dependability; state machine replication.

  • Target exploration by Nomadic Levy walk on unit disk graphs   Order a copy of this article
    by Kouichirou Sugihara, Naohiro Hayashibara 
    Abstract: Random walks play an important role in computer science, covering a wide range of topics in theory and practice, including networking, distributed systems, and optimisation. Levy walk is a family of random walks whose distance of a walk is chosen from the power law distribution. There are lots of recent reports of Levy walk in the context of target detection in swarm robotics, analysing human walk patterns, and modelling the behaviour of animal foraging . According to these results, it is known as an efficient method to search in a two-dimensional plane. However, most of the works assume a continuous plane. In this paper, we propose a variant of Homesick Levy walk, called Nomadic Levy walk, and analyse the behaviour of the algorithm regarding the cover ratio on unit disk graphs. We also show the comparison of Nomadic Levy walk and Homesick Levy walk regarding the target search problem. Our simulation results indicate that the proposed algorithm is significantly efficient for sparse target detection on unit disk graphs compared with Homesick Levy walk, and it also improves the cover ratio. Moreover, we analyse the impact of the movement of the sink (home position) on the efficiency on the target exploration.
    Keywords: random walk; Levy walk; target search; unit disk graphs; DTN; autonomic computing; bio-inspired algorithms.

  • On the design and development of emulation platforms for NFV-based infrastructures   Order a copy of this article
    by Vinicius Fulber Garcia, Thales Nicolai Tavares, Leonardo Da Cruz Marcuzzo, Carlos Raniery Paula Dos Santos, Giovanni Venancio De Souza, Elias Procopio Duarte Junior, Muriel Figueredo Franco, Lucas Bondan, Lisandro Zambenedetti Granville, Alberto Egon Schaeffer-Filho, Filip De Turck 
    Abstract: Network Functions Virtualisation (NFV) presents several advantages over traditional network architectures, such as flexibility, security, and reduced CAPEX/OPEX. In traditional middleboxes, network functions are usually executed on specialised hardware (e.g., firewall, DPI). Virtual Network Functions (VNFs) on the other hand, are executed on commodity hardware, employing Software Defined Networking (SDN) technologies (e.g., OpenFlow, P4). Although platforms for prototyping NFV environments have emerged in recent years, they still have limitations that hinder the evaluation of NFV scenarios such as fog computing and heterogeneous networks. In this work, we present NIEP, which is a platform for designing and testing NFV-based infrastructures and VNFs. NIEP consists of a network emulator and a platform for Click-based VNFs development. NIEP provides a complete NFV emulation environment, allowing network operators to test their solutions in a controlled scenario prior to deployment in production networks.
    Keywords: NFV; VNF; emulation; platform; infrastructure; Click; Mininet; network.

  • Evaluation of navigation based on system optimal traffic assignment for connected cars   Order a copy of this article
    by Weibin Wang, Minoru Uehara, Haruo Ozaki 
    Abstract: Recently, many cars have become connected to the internet. In the near future, almost all cars will be connected cars. Such a connected car will automatically drive according to a navigation system. Conventional car navigation systems are based on user equilibrium (UE) traffic assignment. However, system optimal (SO) traffic assignment is better than UE traffic assignment. To realise SO traffic assignment, complete traffic information is required. When connected cars become ubiquitous, all traffic information will be gathered into the cloud. Therefore, a cloud-based navigation system can provide SO-based navigation to connected cars. An SO-based navigation method in which the cloud collects traffic information from connected cars, computes SO traffic assignments, and recommends SO routes to users was recently proposed. In this paper, we evaluate this SO-based navigation method in detail.
    Keywords: system optimal traffic assignment; connected cars; intelligent transportation system.

  • Towards a secure and lightweight network function virtualisation environment   Order a copy of this article
    by Marco De Benedictis, Antonio Lioy, Paolo Smiraglia 
    Abstract: Cloud computing has deeply affected the structure of modern ICT infrastructures. It represents an enabling technology for novel paradigms, such as Network Function Virtualisation (NFV), which proposes the virtualisation of network functions to enhance the flexibility of networks and to reduce the costs of infrastructure management. Besides potential benefits, NFV inherits the limitations of traditional virtualisation where the isolation of resources comes at the cost of a performance overhead. Lightweight forms of virtualisation, such as containers, aim to mitigate this limitation. Furthermore, they allow the agile composition of complex services. These characteristics make containers a suitable technology for NFV environment. A major concern towards the exploitation of containers is security. Since containers provide less isolation than virtual machines, they can expose the whole host to vulnerabilities. In this work, we investigate container-related threats and propose a secure design for a virtual network function deployed in a lightweight NFV environment.
    Keywords: security; lightweight virtualisation; container; network function virtualisation; NFV; mandatory access control; selinux; docker.

  • A spatial access method approach to continuous k-nearest neighbour processing for location-based services   Order a copy of this article
    by Wendy Osborn 
    Abstract: In this paper, two strategies for handing continuous k-nearest neighbour queries for location-based services are proposed. CKNN1 and CKNN2 use a validity (i.e. safe) region approach for minimising the number of query requests that need to be sent to the server. They also use a two-dimensional spatial access method for both validity region selection and in-structure searching. The latter feature ensures that new searches for a validity region are not required to begin from the root. An evaluation and comparison of both strategies is performed against repeated nearest neighbour search. Both random and exponentially distributed point sets are used. Results show that both approaches achieve significant performance gains, especially with respect to reducing the number of queries that must be sent from the client to the server.
    Keywords: location-based services; continuous nearest neighbour queries; spatial access methods.

  • Scheduling communication-intensive applications on Mesos   Order a copy of this article
    by Alessandro Di Stefano, Antonella Di Stefano, Giovanni Morana 
    Abstract: In recent years, the widespread use of container technologies has significantly altered the interactions between cloud service providers and their customers when developing and offering services. The shift away from virtual private server scenarios in infrastructure-as-a-service environments requires drastic changes to the deployment strategies adopted by service providers. This also opens many questions as to what information must be supplied by customers and how to improve the performance of user applications, especially in the case of communication-intensive applications. In this work, the authors propose the adoption of a new framework for Mesos clusters that aims to improve the deployment strategies of communication intensive applications. Coope4M is based on the partitioning of the user application graph via the isolation index parameter obtained through user-knowledge on the degree of the communication between its components.
    Keywords: Mesos; cluster placement strategy; containers deployment strategy; containers; isolation index; cloud computing;.

  • Assessing distributed collaborative recommendations in different opportunistic network scenarios   Order a copy of this article
    by Lucas Nunes Barbosa, Jonathan Gemmell, Miller Horvath, Tales Heimfarth 
    Abstract: Mobile devices are common throughout the world, even in countries with limited internet access and even when natural disasters disrupt access to a centralised infrastructure. This access allows for the exchange of information at an incredible pace and across vast distances. However, this wealth of information can frustrate users as they become inundated with irrelevant or unwanted data. Recommender systems help alleviate this burden. In this work, we propose a recommender system where users share information via an opportunistic network. Each device is responsible for gathering information from nearby users and computing its own recommendations. An exhaustive empirical evaluation was conducted on two different datasets. Scenarios with different node densities, velocities and data exchange parameters were simulated. Our results show that in a relatively short time when a sufficient number of users are present, an opportunistic distributed recommender system achieves results comparable to that of a centralised architecture.
    Keywords: opportunistic networks; recommender systems; mobile ad hoc networks.

  • A methodology for automated penetration testing of cloud applications   Order a copy of this article
    by Valentina Casola, Alessandra De Benedictis, Massimiliano Rak, Umberto Villano 
    Abstract: Security assessment is a very time- and money-consuming activity. It needs specialised security skills and, furthermore, it is not fully integrated into the software development life-cycle. One of the best solutions for the security testing of an application relies on the use of penetration testing techniques. Unfortunately, penetration testing is a typically human-driven procedure that requires a deep knowledge of the possible attacks and of the hacking tools that can be used to launch the tests. In this paper, we present a methodology that enables the automation of penetration testing techniques based on both application-level models, used to represent the application architecture and its security properties in terms of applicable threats, vulnerabilities and weaknesses, and on system-level models, adopted to automatically generate and execute the penetration testing activities. The proposed methodology can be easily integrated into a continuous integration development process and aid software developers in evaluating security.
    Keywords: cloud application security assessment; cloud application penetration testing; automated penetration testing modelling; automated penetration testing execution.

  • Preferential charging for government authorised emergency electrical vehicles   Order a copy of this article
    by Raziq Yaqub, Fahd Shifa, Fasih-Ud Din 
    Abstract: The proliferation of Electrical Vehicles (EVs) is exponential. However, the power grid is not able to provide simultaneous charging of several EVs owing to limited power production capabilities and old distribution infrastructure. Scheduled charging is one of the most advocated solutions. However, it is not viable for emergency vehicles. This paper proposes to provide priority charging service for government authorised emergency EVs. For enablement of this proposal, a complete solution that includes the architecture, as well as the protocols suite, is suggested. To realise such a service, the paper suggests a major functional entity called a Priority Charging Server, i.e. a database server where authorised emergency EVs IDs are registered, and their record is maintained. The paper also proposes modifications in the IEC15118 and IEC 61850 protocol suits. These protocols provide communication between the vehicle and the grid. The solution also includes roaming as well as non-roaming scenarios, i.e. a priority charging request may be originated by an authorised emergency EV from a Home Utility Network, as well as, Visiting Utility Network. The paper is concluded with a MATLAB-based proof-of-concept simulation.
    Keywords: priority charging; roaming; non-roaming; electric vehicle; protocols; priority server; AAA server.

  • Testing of network security systems through DoS, SQL injection, reverse TCP and social engineering attacks   Order a copy of this article
    by Arianit Maraj, Ermir Rogova, Genc Jakupi 
    Abstract: Cyber-attacks are happening with an ever-increasing frequency to organisations with the goal of gaining access to their sensitive information. These attacks can cause huge damage to various governmental, non-governmental, healthcare, financial and other organisations. Nowadays, it is web applications that are being used to access sensitive information, hence they have become a preferred target for attackers through which to try to access sensitive data. Therefore, it has become of a paramount importance for organisations to implement robust security policies in order to protect sensitive data from being compromised. First and foremost, measures should be taken to prevent these attacks. The best way to prevent cyber-attacks is to test security systems before attacks happen. The most frequent types of attack are: SQL (Structured Query Language) injection, DoS (Denial of Service), reverse TCP (Transmission Control Protocol) and social engineering attacks. In this paper, we use penetration testing techniques for testing security issues of computer systems and networks. We analyse firewalls and other protective systems and their role in security. Various scenarios are used for testing security systems through DoS, SQL injection and reverse TCP. Using penetration testing techniques, we try to find out what is the best solution for protecting sensitive data within the governmental network of Kosovo. We also tackle the issue of social engineering attacks on networks.
    Keywords: cyber-security; denial of service; SQL injection; reverse TCP; social engineering; penetration testing.

  • Research on the relationship between geomantic omen and housing choice in the big data era   Order a copy of this article
    by Lin Cheng 
    Abstract: In order to make the optimal decision of housing choice based on geomantic omen, the modern information technology in big data era is applied to confirm the relationship between the geomantic omen and housing choice. Firstly, geomantic theory and residential district planning decision are discussed. The function, core content and goal of geomantic theory are analysed, and the importance of geomantic theory on the site selection, orientation and spacing and indoor environment of residential region is analysed. The indoor environment of an urban residence includes the following elements, which are road, water body, plant and environmental elements. The geomantic theory can make the distribution trend of road system humane based on four principles. The flow direction of water, distribution of dynamic and static water, water area and layout and composition of water body should be designed based on geomantic theory. Secondly, the big data-mining algorithm based on grey relational theory is studied. The linear big data is pretreated, and the grey relational theory is used to construct the big data-mining algorithm. The selection procedure of weight is designed. Thirdly, the big data relational analysis algorithm is put forward. The analysis procedure includes three aspects, which are preprocessing of original data, procession of environmental parameters, and calculation of relational degree. Finally, three residential districts are used as examples to carry out the grey relational analysis for the geomantic theory and housing choice, and the results verify the effectiveness of the big mining algorithm. In addition, geomantic culture is more important for residents' satisfaction than housing choice, and development of good commercialised living population can be achieved based on geomantic theory.
    Keywords: big data; housing choice; grey relational analysis.

  • Research on hardware-in-the-loop simulation of single point suspension system based on fuzzy PID   Order a copy of this article
    by Jie Yang, Tao Gao, Shengli Yuan, Heng Shi, Zhenli Zhang 
    Abstract: The stability control of a maglev train is one of the core problems in the research of maglev train technology, and the realisation of this goal is of great scientific value in the field of magnetic levitation. Based on this, the research on the suspension control strategy of a single point maglev system is founded, and the control strategy is verified by experiments on a magnetic levitation ball system (MLBS). Aiming at the structure of multi-group independent control system of maglev train suspension frame, in order to improve the overall stability control ability of the suspension frame, the coupling relationship between the subsystems is established by introducing the suspension response deviation compensator. Finally, the effect of the single point suspension control system is discussed, and the cooperative control of suspension frame is carried out on MATLAB. Simulation and analysis show that each subsystem has good anti-jamming ability, and the suspension system realises the balanced and stable control under different interference signals, which provides a certain reference value for further study of maglev train suspension control.
    Keywords: magnetic suspension; fuzzy PID; maglev train bogie; composite control.

  • A study on fog computing architectures and energy consumption approaches regarding QoS requirements   Order a copy of this article
    by Amel Ksentini, Maha Jebalia, Sami Tabbane 
    Abstract: The Internet of Things (IoT) promotion is increasing, for both individuals and businesses. Data is gathered for treatment from locals, machines, smart objects, vehicles, healthcare devices, remote surveillance camera, predictive maintenance, real-time customer information, etc. Cloud computing is providing suitable hardware and software for data processing, such as storage and computing. Thus, the integration of IoT with cloud capabilities may offer several benefits for many applications. However, challenges persist for some use-cases, such as for delay-sensitive services, owing to the huge amount of information collected by IoT devices and to be processed by cloud servers. Fog computing has attracted many researchers in past years since it is expected to overcome several limits and challenges in cloud computing concerning the quality of service (QoS) requirements, such as latency, real-time processing, bandwidth and location awareness. This is due to the fact that data processing may be located at the edge of the network when fog computing is invoked instead of sending information for a longer round-trip to the cloud servers. Nevertheless, researchers still have to deal with several issues, namely the architectural level and the energy aspect. In this paper, we investigate fog system architectures and energy consumption reported in the literature, while considering QoS requirements in the synthesis. A system model is then introduced with a potential solution for QoS management for the fog computing environment
    Keywords: fog computing; IoT; architecture; QoS; energy consumption.

  • Study on NVH robustness evaluation method of high mileage automobile based on systematic sampling   Order a copy of this article
    by Jianqiang Xiong, Le Yuan, Dingding Liao, Jun Wu 
    Abstract: At present, automobile riding comfort is primarily focused on the study of the performance of new automobile NVH, and less research on how to analyse and evaluate the NVH characteristics of high mileage automobile. Based on the principle of statistics, this paper presents a robust evaluation method based on systematic sampling for the stability of high mileage automotive NVH characteristics and expounds the method. The basic idea and the main implementation steps focus on the analysis of the NVH characteristics of high mileage automobile and how to evaluate the robustness of high mileage automobile NVH, and provide a new direction for research into automobile riding comfort.
    Keywords: automobile vibration and noise; evaluation method; high mileage automobile; systematic sampling.

  • Success factor analysis for cloud services: a comparative study on software as a service   Order a copy of this article
    by Dietmar Nedbal, Mark Stieninger 
    Abstract: The emergence of cloud computing has been triggering fundamental changes in the information technology landscape for years. The proliferation of cloud services gave rise to novel types of business model, the complexity of which results from numerous different factors critical to a successful adoption. However, when it comes to improvement activities by cloud service providers, owing to their multifacetedness, the challenge lies in figuring out where to start. Furthermore, the acuteness of actions to be taken varies among different settings. Thus, we propose success factor analysis as an approach to prioritise improvement activities according to their acuteness, which is thereby indicated by the gap between the priority and the actual performance of a particular factor. Results show that the factors with the overall highest gap are security and safety, trust, and costs. Overall, the strengths of cloud services are seen in technical features leading to a good ease of use, a positively perceived usefulness, and a broad availability.
    Keywords: success factor analysis; cloud computing; software as a service; cloud services; survey.

  • Data access control algorithm based on fine-grained cloud storage   Order a copy of this article
    by Qiaoge Xu 
    Abstract: With development of network storage and cloud computation, the cloud storage security has become the critical problem of cloud security technology. The data confidentiality of customer should be ensured in unbelievable storage environment, and the legal data of customer should be protected from tampering. In order to ensure the cloud storage security and achieve fine-grained data access control, a new fine-grained data access control algorithm is established based on CP-ABE algorithm. The basic theory of CP-ABE algorithm is studied in depth, the flowchart of CP-ABE algorithm is put forward. Then the fine-grained cloud storage controlling scheme based on digital envelop is put forward. The structure of new fine-grained cloud storage controlling scheme is designed, the trusted third party mainly generates the public parameters and main password of system, the data owner possesses the original plaintext data of client, the normal user can read digital envelopes stored in cloud storage server, and the cloud service provider (CSP) can offer data storage for the user. The new scheme construction process is given, and then the corresponding algorithm is designed. The new scheme can reduce user management complexity of CSP, and the new scheme also keeps the access controlling fine-grained degree and flexible of original scheme. The fine-grained degree access privilege tree is also designed to to improve the robustness of the fine-grained data access control algorithm and to describe the encryption strategy. Simulation analysis is carried out, and results show that the proposed data access control algorithm can effectively improve the searching efficiency of cipher text, and achieve fine-grained access under cloud storage environment.
    Keywords: data access control algorithm; fine-grained cloud storage; searching efficiency.

  • Multi-objective optimisation of traffic signal control based on particle swarm optimisation   Order a copy of this article
    by Jian Li 
    Abstract: In order to relieve traffic jams, an improved particle swarm optimisation is applied in multiple objective optimisation of traffic signal control. Firstly, a multiple objective optimal model of traffic signal is constructed considering the queue length, vehicle delay, and exhaust emission. The multiple optimal function is transferred to single optimal function through three weighted indexes. The vehicle delay and queue length model under the control of traffic signal is constructed through combining the Webster model and the high capacity manual delay model. The vehicle exhaust emission model under the control of traffic signal is also constructed. The objective function and constraint conditions are confirmed. Secondly, the improved particle swarm optimisation algorithm is established through combining the traditional particle swarm algorithm and genetic algorithm. The mathematics of the particle swarm algorithm is studied in depth, and particles are endowed with hybrid probability, which is random and has no fitness degree value. In every iteration, a number of particles are selected based on the hybrid probability to put them into pool. The location of subparticles can be calculated based on the weighted location of the mother particle. The value of the inertia factor can be regulated based on the following nonlinear inertia weight decrement function. Finally, the simulation analysis is carried out using an intersection as the research objective, the flow of straight road ranges from 300 to 450 pcu, the flow of left turn road ranges from 250 to 380 pcu. The optimal performance index is obtained, and the new multiple objective optimisation model can give better optimal results than the traditional multiple objective optimisation algorithm. A better traffic control effect is obtained.
    Keywords: particle swarm optimisation; traffic signal control; intersection.

  • Policies and mechanisms for enhancing the resource management in cloud computing: a performance perspective   Order a copy of this article
    by Mitali Bansal, Sanjay Kumar Malik, Sanjay Kumar Dhurandher, Issac Woungang 
    Abstract: Resource management is among the critical challenges in cloud computing since it can affect its performance, cost, and functionality. In this paper, a survey of the policies and mechanisms for enhancing the resource management in cloud computing is proposed. From a performance perspective, several resource management schemes for cloud computing are investigated and qualitatively compared in terms of various different parameters, such as performance, response time, scalability, pricing factor, throughput, and accuracy, providing a fundamental knowledge base for researchers in the cloud computing area. We also classified various cloud computing techniques based on various policies, such as capacity allocation, admission control, load balancing and energy optimisation. Furthermore, we divided defined techniques on the basis of various parameters, such as low, medium, high time span time techniques, reliability, performance, and availability, to name a few.
    Keywords: cloud computing; resource management; load balancing; policies and mechanisms; performance perspective.

  • Domo Farm 4.0   Order a copy of this article
    by Silvia Angeloni 
    Abstract: The paper explains and discusses an innovative agricultural appliance, based on vertical farming and hydroponics. The innovative and smart model was launched by a brilliant woman, winner of several awards. Applying her engineering skills, the female entrepreneur has set up a modern company, where technology and agriculture are perfectly integrated in a sustainable way to prevent negative and damaging environmental effects. Recently, the company has developed an automatic hydroponic greenhouse appliance for empowering individuals to grow crops at home. The household hydroponic appliance is based on sensors and smart technologies. The environmental and economic benefits and potentiality of the innovative appliance are highlighted.
    Keywords: big data; Domo Farm 4.0; internet of things; RobotFarm; sensors; smart energy management; smart farm; sustainability.
    DOI: 10.1504/IJGUC.2019.10022982
     
  • A hybrid collaborative filtering recommendation algorithm: integrating content information and matrix factorisation   Order a copy of this article
    by Jing Wang, Arun Sangaiah, Wei Liu 
    Abstract: Matrix factorisation is one of the most popular techniques in recommendation systems. However, matrix factorisation still suffers from the cold start problem. Moreover, there are too many parameters in the matrix factorisation model, producing a complicated computation. In this paper, we present a hybrid recommendation algorithm, that integrates user and item content information and matrix factorisation. First, based on user or item content information, similar user or item neighbour sets can be generated. Through these neighbour sets, user or item rating preference can be evaluated in advance. Incorporating user and item preference into the matrix factorisation model, we obtain the final prediction model. Finally, the momentum stochastic gradient descent method is used to optimize parameter learning. Experimental results on a real dataset have shown our algorithm yield the best performance in terms of MAE and RMSE when compared with other classical matrix factorisation recommendation algorithms.
    Keywords: recommender system; collaborative filtering; matrix factorisation; momentum stochastic gradient descent.

  • Classification of cognitive algorithms for managing services used in cloud computing   Order a copy of this article
    by Lidia Ogiela, Makoto Takizawa, Urszula Ogiela 
    Abstract: This paper presents a new idea of cognitive systems dedicated to cloud computing, especially backgrounds, introduction and description of service management procedures and algorithms dedicated to cloud computing and infrastructure. Cognitive methods are based on semantic description and interpretation procedures. The described idea will be dedicated to secure service management procedures, especially in the cloud and fog stages. The proposed algorithms of cognitive service management will be presented and described by use of semantic aspects. Semantic analysis is used to extract the meaning of the analysed data. Also, in management processes, it is possible to analyse meaning aspects. These kinds of analysis can be used in different application areas. This paper presents services management protocols in the cloud and in the fog. In both of the cloud and fog stages it is possible to realise management procedures by application of secure methods and protocols. This paper presents the sharing techniques for data security in cloud computing.
    Keywords: cognitive algorithms; fog and cloud computing; service management protocols; cognitive data security.

  • Performance analysis of StaaS on IoT devices in fog computing environment using embedded systems   Order a copy of this article
    by José Dos Santos Machado, Danilo Souza Silva, Raphael Fontes, Adauto Menezes, Edward Moreno, Admilson Ribeiro 
    Abstract: This work presents the concept of fog computing, its theoretical contextualisation, and related works, and performs an analysis of fog computing to provide StaaS (Storage as a Service) on IoT devices using embedded systems platforms, in addition to comparing its results with those obtained by a high-performance server. In this article, we use OwnCloud and Benchmark SmashBox (for data transfer analysis). The results showed that the implementation of this service in embedded systems devices can be a good alternative to reduce one of these problems, in this case the storage of data, which currently affects IoT devices.
    Keywords: fog computing; cloud computing; IoT; embedded systems; StaaS.

  • Model for generation of social network considering human mobility and interaction   Order a copy of this article
    by Naoto Fukae, Hiroyoshi Miwa, Akihiro Fujihara 
    Abstract: The structure of an actual network in the real world has often the scale-free property that the degree distribution follows the power law. As for a generation mechanism of a human relations network, it is necessary to consider human mobility and interactions, because, in general, a person moves around, meets another person, and makes human relation stochastically. However, there are few models considering human mobility so far. In this paper, we propose a mathematical model generating a human relations network for the purpose of fundamental research on the usage model for the utility computing. We show by the numerical experiments that a network generated by the proposed model has the scale-free property, the clustering coefficient follows the power law, and the average distance is small. This means that the proposed model can explain the mechanism generating an actual human relations network.
    Keywords: human relations network; scale-free; human mobility; human interactions; homesick Levy walk; network generation model.

  • Algorithmic node classification in AND/OR mobile workflow graph   Order a copy of this article
    by Ihtisham Ali, Susmit Bagchi 
    Abstract: Next-generation data-intensive applications in various fields of science and engineering employ complex workflow graph execution models in dynamic networks. However, in dynamic networks, heterogeneity and the mobility of nodes result in low efficiency owing to end-to-end delay in execution in complex workflow graphs. Supporting such data-intensive workflows and optimising their performance require analysis of complex workflow graphs in order to reach the objectives such as deadlines and fast execution etc. A major limitation of the current workflow models is the lack of structural stability to visualise a complex workflow graph having the mobility of nodes. In this paper, we address this problem by proposing a hybrid AND/OR mobile workflow graph (MWG) model to visualise a fully conditioned complex workflow graph having the mobility of nodes. Moreover, this paper proposes nodes validity detection (NVD) algorithm for classifying the total number of nodes in the AND/OR MWG. Furthermore, nodes criticality detection (NCD) algorithm is also proposed to identify the set of critical nodes in the AND/OR MWG. The proposed algorithms will enable efficiently analysing, mapping and scheduling of complex workflow graphs in a dynamic network environment. The NVD and NCD algorithms are implemented in Java language and evaluated on the testbed. The regression analysis of projected algorithmic performance is presented. A detailed comparative analysis considering matrix elements is presented in this paper.
    Keywords: workflow graph; dynamic networks; mobile node; nodes classification; critical node.

  • A proposal for a healthcare environment with a real-time approach   Order a copy of this article
    by Eliza Helena Areias Gomes, Mario Antonio Ribeiro Dantas, Patricia Della Méa Plentz 
    Abstract: The increased use of IoT has contributed to the popularisation of environments that monitor the daily activities and health of the elderly, children or people with disabilities. The requirements of these environments, such as low latency and rapid response, corroborate the usefulness of associating fog computing with healthcare environment since one of the advantages of fog is to provide low latency. Because of this, we propose the use of a hardware and software infrastructure capable of storing, processing and presenting monitoring data in real-time, based on the fog computing paradigm. Additionally, we propose the structuring of sensors for the implementation of a simulated healthcare environment, as well as the processing logic for the presentation of results referring to the health of the user.
    Keywords: IIoT platform; time constraint; fog computing; healthcare application.

  • Design and implementation of broadcasting system for selective contents considering interruption time   Order a copy of this article
    by Takuro Fujita, Yusuke Gotoh 
    Abstract: Owing to the recent popularisation of digital broadcasting, selective contents broadcasting has attracted much attention. In selective contents broadcasting, although the server delivers contents based on their preferences, users may experience the interruption time while playing their selected contents. To reduce this interruption time, many researchers have proposed scheduling methods. However, since these scheduling methods evaluated the interruption time in simulation environments, we need to evaluate them in network environments. In this paper, we propose a broadcasting system of selective contents and evaluate its effectiveness in network environments.
    Keywords: broadcasting; interruption time; scheduling; selective contents; waiting time.

  • An algorithm to optimise the energy distribution of data centre electrical infrastructures   Order a copy of this article
    by Joao Ferreira, Gustavo Callou, Paulo Maciel, Dietmar Tutsch 
    Abstract: Owing to the demands of new technologies such as social networks, e-commerce and cloud computing, more energy is being consumed in order to store all the produced data. While these new technologies require high levels of availability, a reduction in the cost and environmental impact is also expected. The present paper proposes a power balancing algorithm (PLDA-D) to optimise the energy distribution of data centre electrical infrastructures. The PLDA-D is based on the Bellman and Ford-Fulkerson flow algorithms that analyse energy-flow models (EFM). EFM computes power efficiency, sustainability, and cost metrics of data centre infrastructures. To demonstrate the applicability of the proposed strategy, we present a case study that analyzed four power infrastructures. The results obtained shows about 3.8% reduction in sustainability impact and operational costs.
    Keywords: energy flow model; dependability; sustainability; data centre power architectures; optimisation.

  • Implementing the software defined management framework   Order a copy of this article
    by Maxwell Monteiro, Káio Simonassi, Rodolfo Villaça, Renan Tavares, Cassio Reginato 
    Abstract: Software Defined Infrastructure (SDI) has become a relevant topic for the computing and communications industry. Despite this huge technological movement, network and systems management has been disregarded as one of the main themes in this ecosystem, and SDI has been managed by semi-software-defined management solutions. In order to reduce this gap, this paper presents SDMan, a software defined management framework. The SDMan's proof of concept uses the OpenStack cloud platform and aims to demonstrate the feasibility of the proposed solution.
    Keywords: software defined infrastructure; software defined networks; network management; cloud computing.

  • Predicting students' academic performance: Levy search of cuckoo-based hybrid classification   Order a copy of this article
    by Deepali R. Vora, Kamatchi Iyer 
    Abstract: Nowadays, Educational Data Mining (EDM) exists as a novel trend in the Knowledge Discovery in Databases (KDD) and Data Mining (DM) fields concerned with mining valuable patterns and finding out practical knowledge from educational systems. However, evaluating the educational performance of students is challenging as their academic performance pivots on varied constraints. Hence, this paper intends to predict the educational performance of students based on socio-demographic information. To attain this, performance prediction architecture is introduced with two modules. One module is for handling the big data via MapReduce (MR) framework, whereas the second module is an intelligent module that predicts the performance of the students using intelligent data processing stages. Here, the hybridisation of classifiers such as Support Vector Machine (SVM) and Deep Belief Network (DBN) is adopted to get better results. In DBN, Levy Search of Cuckoo (LC) algorithm is adopted for weight computation. Hence, the proposed prediction model SVM-LCDBN is proposed that makes deep connection with the hybrid classifier to attain more accurate output. Moreover, the adopted scheme is compared with conventional algorithms, and the results are attained.
    Keywords: data mining; educational data mining; MapReduce framework; support vector machine; deep belief network; cuckoo search algorithm; Levy flight.

  • Combined interactive protocol for lattice-based group signature schemes with verifier-local revocation   Order a copy of this article
    by Maharage Nisansala Sevwandi Perera, Takeshi Koshiba 
    Abstract: In group signature schemes the signer is required to prove his validity of generating signatures on behalf of the group to the signature verifier. However, since the signer's identity should be anonymous to the verifier, the proving mechanism should not reveal any information related to the signer. Thus, the signers should follow a zero-knowledge proving system when interacting with the verifiers. In group signature schemes with verifier-local revocation (VLR) mechanism, the group members have another secret attribute called a revocation token other than the secret signing key. Thus, the signer has to prove that his revocation token is not in the revoked member list without revealing his token to the verifier. Even though the first lattice-based group signature scheme with verifier-local revocation (Langlois et al. at PKC2014) proved the validity of the signer using an underlying interactive protocol, their scheme relied on weaker security because revocation tokens are derived from the secret signing keys. This paper discusses situations, where the secret signing keys and revocation tokens are generated separately to achieve strong security, and provides a new combined interactive protocol that passes zero-knowledge to prove the validity of the signer. Moreover, the new interactive protocol covers the situations where the group manager prefers using an explicit tracing algorithm rather than using the implicit tracing algorithm to identify a signer. As a result, this work presents a combined interactive protocol that signer can use to prove his validity of signing, his separately generated revocation token is not in the revocation list, and his index is correctly encrypted to support the explicit tracing algorithm.
    Keywords: lattice-based group signatures; verifier-local revocation; zero-knowledge proof; interactive protocol.

  • Chronological and exponential based Lion optimisation for optimal resource allocation in cloud   Order a copy of this article
    by J. Devagnanam, N.M. Elango 
    Abstract: Cloud computing is a service-oriented architecture, which has prominent importance over the development of the enterprises and markets. The main intention of the cloud computing is to maximise the effectiveness of the shared resources upon the needs and also, to maintain the profit of the cloud provider as well. Accordingly, this paper introduced an optimisation scheme for allocating suitable resources for cloud computing. Previously, a resource allocation was developed by introducing the EWMA based Lion Algorithm (E-Lion). In this work, the previously developed E-Lion algorithm is extended by including the chronological concept to develop a novel algorithm, named Chronological E-Lion. Also, for further refining the resource allocation scheme, the proposed Chronological E-Lion algorithm uses the fitness with parameters, such as cost, profit, CPU allocation, memory allocation, MIPS, and frequency scaling. Implementation of the proposed scheme uses three different problem instances and is evaluated based on metrics, such as profit, CPU allocation rate, and memory allocation rate. From the simulation results, it can be concluded that the proposed Chronological based E-Lion algorithm achieved improved performance with the values of 45.925, 0.1555, and 0.0093, for profit, CPU utilisation rate, and memory utilisation rate.
    Keywords: cloud computing; resource allocation; E-Lion; chronological concept; CPU utilisation rate; memory utilisation rate.

  • An empirical study of alternating least squares collaborative filtering recommendation for MovieLens on Apache Hadoop and Spark   Order a copy of this article
    by Jung-Bin Li, Szu-Yin Lin, Yu-Hsiang Hsu, Ying-Chu Huang 
    Abstract: In recent years, both consumers and businesses have faced the problem of information explosion, and the recommendation system provides a possible solution. This study implements a movie recommendation system that provides recommendations to consumers in an effort to increase consumer spending while reducing the time between film selections. This study is a prototype of collaborative filtering recommendation system based on Alternating Least Squares (ALS) algorithm. The advantage of collaborative filtering is that it can avoid possible violations of the Personal Data Protection Act and reduce the possibility of errors due to poor quality of personal data. Our research improves the ALS's limited scalability by using a platform that combines Spark with Hadoop Yarn and uses this combination to calculate movie recommendations and store data separately. Based on the results of this study, our proposed system architecture provides recommendations with satisfactory accuracy while maintaining acceptable computational time with limited resources.
    Keywords: recommendation system; alternating least square; collaborative filtering; MovieLens; Hadoop; Spark; content-based filtering.

  • Cognitive workload management on globally interoperable network of clouds   Order a copy of this article
    by Giovanni Morana, Rao Mikkilineni, Surendra Keshan 
    Abstract: A new computing paradigm using Distributed Intelligent Managed Elements (DIME) and DIME Network Architecture (DNA) is used to demonstrate globally interoperable public and private cloud network deploying cloud agnostic workloads. The workloads are cognitive and able to adjust autonomously their structure and maintain desired quality-of-service (QoS). DNA is designed to provide a control architecture for workload self-management of non-functional requirements to address rapid fluctuations either in workload demand or fluctuations in available resources. Using DNA, a transaction intensive three-tier workload is migrated from a physical server to a virtual machine hosted in a public cloud without interrupting the service transactions. After migration, cloud agnostic inter-cloud and intra-cloud auto-scaling, auto- failover and live migration are demonstrated again, without disrupting the user experience or losing transactions.
    Keywords: ABS; Turing machine; cloud computing; edge cloud; quality of service; self-managing workloads; datacentre.
    DOI: 10.1504/IJGUC.2019.10023104
     
  • Towards autonomous creation of service chains on cloud markets   Order a copy of this article
    by Benedikt Pittl, Irfan Ul-Haq, Werner Mach, Erich Schikuta 
    Abstract: Today, cloud services, such as virtual machines, are traded directly at fixed prices between consumers and providers on platforms, e.g. Amazon EC2. The recent development of Amazon's EC2 spot market shows that dynamic cloud markets are gaining popularity. Hence, autonomous multi-round bilateral negotiations, also known as bazaar negotiations, are a promising approach for trading cloud services on future cloud markets. They play a vital role for composing service chains. Based on a formal description we describe such service chains and derive different negotiation types. We implement them in a simulation environment and evaluate our approach by executing different market scenarios. Therefore, we developed three negotiation strategies for cloud resellers. Our simulation results show that cloud resellers as well as their negotiation strategies have a significant impact on the resource allocation of cloud markets. Very high as well as very low mark-ups reduce the profit of a reseller.
    Keywords: cloud computing; cloud marketplace; IaaS; infrastructure as a service; bazaar-negotiation; SLA negotiation; simulation; cloud service chain; cloud reseller; multi-round negotiation; cloud economics.
    DOI: 10.1504/IJGUC.2019.10023105
     
  • Cache replication for information-centric networks through programmable networks   Order a copy of this article
    by Erick Barros Nascimento, Edward David Moreno, Douglas Dyllon Jeronimo De Macedo 
    Abstract: Software-Defined Networking (SDN) is a new approach that decouples control from the data transfer function and can be directly programmable by the programming language. At the same time, Information-Centric Networks (ICNs) influence the search for information through network caching and multipart communication. Moreover, these projects are developed to solve traffic problems and have content transfer through a scalable network structure with simple management. The SDN covers ICNs, besides decoupling the control to allow flexibility of network settings to reduce overhead of segments. Based on this information, an architecture was designed to provide reliable content that can be replicated in the network. The ICN architecture proposed stores information through a logical volume to the next access, enabling connection with remote controllers for reliable storage in cloud environments. The cache efficiency achieved almost 50% reduction of time response, in addition, there was improvement around 10% when the number of parallel requests was increased.
    Keywords: SDN; software-defined networking; ICN; information-centric network; programmability; flexibility; management; storage; controller.
    DOI: 10.1504/IJGUC.2019.10023106
     
  • Improving the MXFT scheduling algorithm for a cloud computing context   Order a copy of this article
    by Paul Moggridge, Na Helian, Yi Sun, Mariana Lilley, Vito Veneziano, Martin Eaves 
    Abstract: In this paper, the Max-Min Fast Track (MXFT) scheduling algorithm is improved and compared against a selection of popular algorithms. The improved versions of MXFT are called Min-Min Max-Min Fast Track (MMMXFT) and Clustering Min-Min Max-Min Fast Track (CMMMXFT). The key difference is using Min-Min for the fast track. Experimentation revealed that despite Min-Min's characteristic of prioritising small tasks at the expense of overall makespan, the overall makespan was not adversely affected and the benefits of prioritising small tasks were identified in MMMXFT. Experiments were conducted by using a simulator with the exception of one real-world experiment. The real-world experiment identified challenges faced by algorithms which rely on accurate execution time prediction.
    Keywords: cloud computing; scheduling algorithms; max-min.
    DOI: 10.1504/IJGUC.2019.10023108
     
  • Model-based deployment of secure multi-cloud applications   Order a copy of this article
    by Valentina Casola, Alessandra De Benedictis, Massimiliano Rak, Umberto Villano, Erkuden Rios, Angel Rego, Giancarlo Capone 
    Abstract: The wide diffusion of cloud services, offering functionalities in different application domains and addressing different computing and storage needs, opens up the possibility of building multi-cloud applications relying upon heterogeneous services, offered by multiple cloud service providers. This flexibility not only enables an efficient usage of resources, but also allows to cope with specific requirements in terms of security and performance, while requiring, however, a typically high development effort. The MUSA framework leverages a DevOps approach to develop multi-cloud applications with desired Security Service Level Agreements (SSLA). This paper describes the MUSA Deployer models and tools, which aim at decoupling the multi-cloud application modelling and development from application deployment and cloud services provisioning. With MUSA tools, designers and developers are able to express and easily evaluate the application security requirements, and to deploy it automatically by acquiring and configuring cloud services with the needed software components.
    Keywords: cloud security; multi-cloud deployment; automated deployment.
    DOI: 10.1504/IJGUC.2019.10023107
     
  • Resource auto-scaling for SQL-like queries in the cloud based on parallel reinforcement learning   Order a copy of this article
    by Mohamed Mehdi Kandi, Shaoyi Yin, Abdelkader Hameurlain 
    Abstract: Cloud computing is a technology that provides on-demand services in which the number of assigned resources can be automatically adjusted. A key challenge is how to choose the right number of resources so that the overall monetary cost is minimised. This problem, known as auto-scaling, was addressed in some existing works but most of them are dedicated to web applications. In these applications, it is assumed that the queries are atomic and each of them uses a single resource for a short period of time. However, this assumption cannot be considered for database applications. A query, in this case, contains many dependent and long tasks so several resources are required. We propose in this work an auto-scaling method based on reinforcement learning. The method is coupled with placement-scheduling. In the experimental section, we show the advantage of coupling the auto-scaling to the placement-scheduling by comparing our work to an existing auto-scaling method.
    Keywords: cloud computing; auto-scaling; resource allocation; parallel reinforcement learning.
    DOI: 10.1504/IJGUC.2019.10023131
     
  • Data analysis of CSI 800 industry index by using factor analysis model   Order a copy of this article
    by Chunfen Xu 
    Abstract: This paper studies the linkages among the industries based on CSI 800 industry index, which provides mass complicated data for industry research. Factor analysis, a useful data analysis tool, allows researchers to investigate concepts that are not easily measured directly by collapsing a large number of variables into a few interpretable underlying factors. Firstly, data of ten industries in the period from September 2009 to March 2017 is collected from CSI 800 Index and correlational analyses are conducted. Secondly, this paper establishes an appropriate evaluation system, and then uses factor analysis to do dimension reduction. Finally, some characteristics and trends in various industries are obtained.
    Keywords: industry research; CSI 800 index; correlation analysis; factor analysis; dimension reduction.
    DOI: 10.1504/IJGUC.2019.10023115
     
  • Don't lose the point, check it: Is your cloud application using the right strategy?   Order a copy of this article
    by Demis Gomes, Glauco Gonçalves, Patricia Endo, Moisés Rodrigues, Judith Kelner, Djamel Sadok, Calin Curescu 
    Abstract: Users pay for running their applications on cloud infrastructure, and in return they expect high availability, and minimal data loss in case of failure. From a cloud provider perspective, any hardware or software failure must be detected and recovered as quickly as possible to maintain users' trust and avoid financial losses. From a user's perspective, failures must be transparent and should not impact application performance. In order to recover a failed application, cloud providers must perform checkpoints, and periodically save application data, which can then be recovered following a failover. Currently, a checkpoint service can be implemented in many ways, each presenting different performance results. The main research question to be answered is: what is the best checkpoint strategy to use given some users' requirements? In this paper, we performed experiments with different checkpoint service strategies to understand how these are affected by the computing resources. We also provide a discussion about the relationship between service availability and the checkpoint service.
    Keywords: checkpoint; failover; performance evaluation; SAF standard.
    DOI: 10.1504/IJGUC.2019.10023121
     
  • A cloud-based approach to dynamically manage service contracts for local public transportation   Order a copy of this article
    by Antonella Longo, Marco Zappatore, Mario A. Bochicchio 
    Abstract: Public contracts regulate how public services are managed by the stakeholders. However, the current technological trend is creating a significant bias between the pace at which service data are produced and that at which contracts change. This increased availability of service data can be exploited in public procurement processes by fostering novel approaches to manage contracts, making them more dynamic and improving the Quality of Service (QoS) delivered to customers. In this paper, a cloud-based approach for assessing the QoS in Local Transportation Services (LTSs) in Apulia Region (Southern Italy) is proposed. Service Level Agreements (SLAs) between providers and the Regional Authority, as well as the minimal guaranteed QoS levels between providers and passengers, are modelled as contracts enacted via a cloud-based system, which gathers data from sensors and passengers. In this way, changes in contract conditions for improving the perceived and delivered QoS can be fastened and facilitated based on data. In order to validate the pilot case, a set of quality indicators and service levels grounded in European and Italian regulatory frameworks has been considered.
    Keywords: public contracts; cloud computing; quality of service; quality of experience; local public transportation.
    DOI: 10.1504/IJGUC.2020.10021245
     
  • Towards to virtual infrastructure allocation on multiple IaaS providers with survivability and reliability requirements   Order a copy of this article
    by Anderson Schwede Raugust, Wilton Jaciel Loch, Felipe Rodrigo De Souza, Maurício Aronne Pillon, Charles Christian Miers, Guilherme Piêgas Koslovski 
    Abstract: The diversity of services, prices, and geographical footprints has turned the clouds into a complex and heterogeneous environment. Moreover, the survivability and reliability aspects are often disregarded by tenants, eventually resulting in heavy losses due to unavailability of services that are hosted on Virtual Infrastructures (VIs). We present an alternative to improve Vis' survivability and reliability, which considers the use of replicas and the spreading of virtual resources atop providers, regions, and zones. We formulate the VI allocation with survivability and reliability requirements as a mixed integer program, and three strategies to solve the formulation are proposed. First, the binary constraints are relaxed to obtain a Linear Program (LP), and the LP solution is given as input for the simulated annealing technique. Then, two GPU-accelerated algorithms are proposed to speed up the allocation of large-scale scenarios. Simulation with different reliability requests indicate an increasing in survivability without inflating costs.
    Keywords: allocation; IaaS; reliability; survivability; availability; virtual infrastructure; providers.
    DOI: 10.1504/IJGUC.2019.10023134
     

Special Issue on: Emergent Peer-to-Peer Network Technologies for Ubiquitous and Wireless Networks

  • An improved energy efficient multi-hop ACO-based intelligent routing protocol for MANET   Order a copy of this article
    by Jeyalaxmi Perumaal, Saravanan R 
    Abstract: A Mobile Ad-hoc Network (MANET) consists of group of mobile nodes, and the communication among them is done without any supporting centralised structure. Routing in a MANET is a difficult because of its dynamic features, such as high mobility, constrained bandwidth, link failures due to energy loss, etc., The objective of the proposed work is to implement an intelligent routing protocol. Selection of the best hops is mandatory to provide good throughput in the network, therefore Ant Colony Optimisation (ACO) based intelligent routing is proposed. Selecting the best intermediate hop for intelligent routing includes ACO technique, which greatly reduces the network delay and link failures by validating the co-ordinator nodes. Best co-ordinator nodes are selected as good intermediate hops in the intelligent routing path. The performance is evaluated using the simulation tool NS2, and the metrics considered for evaluation are delivery and loss rate of sent data, throughput and lifetime of the network, delay and energy consumption.
    Keywords: ant colony optimisation; intelligent routing protocol; best co-ordinator nodes; MANET.

  • Analysis of spectrum handoff schemes for cognitive radio networks considering secondary user mobility   Order a copy of this article
    by K.S. Preetha, S. Kalaivani 
    Abstract: There has been a gigantic spike in the usage and development of wireless devices since wireless technology came into existence. This has contributed to a very serious problem of spectrum unavailability or spectrum scarcity. The solution to this problem comes in the form of cognitive radio networks, where secondary users (SUs), also known as unlicensed users, make use of the spectrum in an opportunistic manner. The SU uses the spectrum in a manner such that the primary or the licensed user (PU) doesnt face interference above a threshold level of tolerance. Whenever a PU comes back to reclaim its licensed channel, the SU using it needs to perform a spectrum handoff (SHO) to another channel that is free of PU. This way of functioning is termed as spectrum mobility. Spectrum mobility can be achieved by means of SHO. Initially, the SUs continuously sense the channels to identify an idle channel. Errors in the sensing channel are possible. A detection theory is put forth to analyse the spectrum sensing errors with the receiver operating characteristic (ROC) considering false alarm probability, miss detection and detection probability. In this paper, we meticulously investigate and analyse the probability of spectrum handoff (PSHO), and hence the performance of spectrum mobility, with Lognormal-3 and Hyper-Erlang distribution models considering SU call duration and residual time of availability of spectrum holes as measurement metrics designed for tele-traffic analysis.
    Keywords: cognitive radio networks; detection probability; probability of a miss; SNR; false alarm probability; primary users; secondary users.

  • Link survivability rate-based clustering for QoS maximisation in VANET   Order a copy of this article
    by D. Kalaivani, P.V.S.S.R. Chandra Mouli Chandra Mouli 
    Abstract: The clustering technique is used in VANET to manage and stabilise topology information. The major requirement of this technique is data transfer through the group of nodes without disconnection, node coordination, minimised interference between number of nodes, and reduction of hidden terminal problem. The data communication among each node in the cluster is performed by a cluster head (CH). The major issues involved in the clustering approaches are improper definition of cluster structure, maintenance of cluster structure in dynamic network. To overcome these issues in the clustering technique, the link- and weight-based clustering approach is developed along with a distributed dispatching information table (DDIT) to repeatedly use the significant information for avoiding data transmission failure. In this paper, the clustering algorithm is designed on the basis of relative velocity value of two same directional vehicles by forming a cluster with number of nodes in a VANET network. Then, the CH is appropriately selected based on the link survival rate of the vehicle to provide the emergency message towards different vehicles in the cluster, along with the stored data packet information in the DDIT table for fault prediction. Finally, the efficient medium access control (MAC) protocol is used to provide a prioritised message for avoiding spectrum shortage of emergency messages in the cluster. The comparative analysis between the proposed link-based CH selection with DDIT (LCHS-DDIT) with the existing methods, such as clustering-based cognitive MAC (CCMAC), multichannel CR ad-hoc network (MCRAN), and dedicative short range communication (DSRC), proves the effectiveness of LCHS-DDIT regarding the throughput, packet delivery ratio, routing control overhead with minimum transmission delay.
    Keywords: vehicular ad-hoc networks; link survival rate; control channel; service channel; medium access control; roadside unit; on-board unit.

Special Issue on: Emerging Scalable Edge Computing Architectures and Intelligent Algorithms for Cloud-of-Things and Edge-of-Things

  • A survey on fog computing and its research challenges   Order a copy of this article
    by Jose Dos Santos Machado, Edward David Moreno, Admilson De Ribamar Lima Ribeiro 
    Abstract: This paper reviews the new paradigm of distributed computing, which is fog computing, and it presents its concept, characteristics and areas of performance. It performs a literature review on the problem of its implementation and analyses its research challenges, such as security issues, operational issues and their standardisation. We show and discuss that many questions need to be researched in academia so that their implementation will become a reality, but it is clear that their adherence is inevitable for the internet of the future.
    Keywords: fog computing; edge computing; cloud computing; IoT; distributed computing; cloud integration to IoT.

  • Hybrid coherent encryption scheme for multimedia big data management using cryptographic encryption methods   Order a copy of this article
    by Stephen Dass, J. Prabhu 
    Abstract: In todays world of technology, data has been playing an imperative role in many different technical areas. Data confidentiality, integrity and data security over the internet from different media and applications are challenging tasks. Data generation from multimedia and IoT data is another huge source of big data on the internet. When sensitive and confidential data are accessed by attacks this lead to serious countermeasures to security and privacy. Data encryption is the mechanism to forestall this issue. Many encryption techniques are used for multimedia and IoT, but when massive data are developed it there are more computational challenges. This paper designs and proposes a new coherent encryption algorithm that addresses the issue of IoT and multimedia big data. The proposed system can cause a strong cryptographic effect without holding much memory and easy performance analysis. Handling huge data with the help of GPU is included in the proposed system to enhance the data processing more efficiently. The proposed algorithm is compared with other symmetric cryptographic algorithms such as AES,DES,3-DES, RC6 and MARS based on architecture, flexibility, scalability, security level and also based on computational running time, and throughput for both encryption and decryption processes. An avalanche effect is also calculated for the proposed system to be 54.2%. The proposed framework better secures the multimedia against real time attacks when compared with the existing system.
    Keywords: big data; symmetric key encryption; analysis; security; GPU; IoT; multimedia big data.

  • A study on data deduplication schemes in cloud storage   Order a copy of this article
    by Priyan Malarvizhi Kumar, Usha Devi G, Shakila Basheer, Parthasarathy P 
    Abstract: Digital data is growing at immense rates day by day, and finding efficient storage and security mechanisms is a challenge. Cloud storage has already gained popularity because of the huge data storage capacity in storage servers made available to users by the cloud service providers. When lots of users upload data in cloud there can be too many redundant data as well and this can waste storage space as well as affect transmission bandwidth. To promise efficient storage handling of this redundant data is very important, which is done by the concept of deduplication. The major challenge for deduplication is that most users upload data in encrypted form for privacy and security of data. There are many prevailing mechanisms for deduplication, some of which handle encrypted data as well. The purpose of this paper is to conduct a survey of the existing deduplication mechanisms in cloud storage and to analyse the methodologies used by each of them.
    Keywords: deduplication; convergent encryption; cloud storage.

Special Issue on: Applied Soft Computing for Optimisation and Parallel Applications

  • An enhanced Jaya algorithm for solving nurse scheduling problem   Order a copy of this article
    by Walaa H. El-Ashmawi, Ahmed F. Ali 
    Abstract: Nurse Scheduling Problem (NSP) is one of the main optimisation problems that require an efficient assignment of a number of nurses to a number of shifts in order to cover the hospital's planning horizon demands. NSP is an NP-hard problem which subjects to a set of hard and soft constraints. Such problems can be solved by optimisation algorithms efficiently such as meta-heuristic algorithms. In this paper, we enhanced one of the most recent meta-heuristic algorithms which is called Jaya for solving the NSP. The enhanced algorithm is called EJNSP (Enhanced Jaya for Nurse Scheduling Problem). EJNSP focuses on maximising the nurses' preferences about shift requests and minimising the under- and over-staffing. EJNSP has two main strategies. First, it randomly generates an initial effective scheduling that satisfies a set of constraints. Second, it uses swap operators in order to satisfy the set of soft constraints to achieve an effective scheduling. A set of experiments have been applied to a set of the benchmark dataset with different numbers of nurses and shifts. The experimental results demonstrated that EJNSP algorithm achieved effective results for solving NSP in order to minimise the under- and over-staffing and satisfy the nurses' preferences.
    Keywords: nurse scheduling problem; meta-heuristic algorithms; Jaya optimisation algorithm.
    DOI: 10.1504/IJGUC.2019.10022662
     
  • An adaptive technique for cost reduction in cloud data centre environment   Order a copy of this article
    by Hesham M. Elmasry, Ayman E. Khedr, Mona M. Nasr 
    Abstract: The developing interest for utilising the Cloud Computing (CC) has expanded the energy consumption of data centres which has become a critical issue. High energy consumption not only is translated to high operational cost but also reduces the profit margin for the cloud providers and leads to high carbon emissions, which are not environmentally friendly. Therefore, there is a need for energy-saving solutions to minimise the negative impact of CC. This research proposes an Energy Saving Load Balancing (ESLB) technique that plans to make energy saving in the cloud server while keeping up the Service Level Agreement (SLA), which includes the Quality of Service (QoS) between the cloud service provider and cloud customers. This proposed technique aims to enhance the performance, resources' utilisation and reduce the both of energy consumption and carbon dioxide in order to mitigate the negative impact of CC on the environment.
    Keywords: data centre; energy efficiency; GCC; green cloud computing; load balancing; QoS; quality of service; data science; big data; data modelling; data mining.
    DOI: 10.1504/IJGUC.2019.10022663
     
  • Novel mobile palmprint databases for biometric authentication   Order a copy of this article
    by Mahdieh Izadpanahkakhk, Seyyed Mohammad Razavi, Mehran Taghipour-Gorjikolaie, Seyyed Hamid Zahiri, Aurelio Uncini 
    Abstract: Mobile palmprint biometric authentication has attracted a lot of attention as an interesting analytics tool for representing discriminative features. Despite the advances in this technology, there are some challenges including lack of enough data and invariant templates to the rotation, illumination, and translation. In this paper, we provide two mobile palmprint databases and we can address the aforementioned challenges via deep convolutional neural networks. In the best of our knowledge, this paper is the first study in which mobile palmprint images were acquired in some special views and then were evaluated via deep learning training algorithms. To evaluate our mobile palmprint images, some well-known convolutional neural networks are applied for verification task. By using these networks, the best performing results are achieved via GoogLeNet and CNN-F architectures in terms of cost of the training phase and classification accuracy of the test phase obtained in the 1-to-1 matching procedure.
    Keywords: training algorithms; biometric authentication; palmprint verification; mobile devices; deep learning; convolutional neural network; feature extraction.
    DOI: 10.1504/IJGUC.2019.10019524
     
  • IoT-based intensive care secure framework for patient monitoring and tracking   Order a copy of this article
    by Lamia Nabil Omran, Kadry Ali Ezzat, Alaa Bayoumi, Ashraf Darwich, Aboul Ella Hassanien 
    Abstract: This paper aims to design a prototype of the real-time patient control system. The proposed framework is used to quantify the physical parameters of the patient such as the temperature of the body, rate of heartbeat and ECG observation with the assistance of sensors. The collected data is sent to the cloud, then to the nurse station, specialist and the patient tablet or the web application. In this framework, the patient's health is checked consistently and the data obtained through the networks are transmitted. If any irregularity is noticed from the patient's signs, it will be sent to nurses and doctors for any suggestions to help the patient. The system is implemented through Arduino advanced controller and simulation results are obtained. The Smart Intensive Care Unit (SICU) provides a new way for health monitoring of patients in order to improve healthcare systems and patients' care and safety. The cloud system is provided by a group of micro-services hosted in many servers the simulate a small cloud system. To secure the patient's data through this framework is provided by using OAuth server to authenticate the users and the sensors and generate the tokens. This system can assist doctors and nurses to achieve their missions and improve the healthcare system.
    Keywords: intensive care unit; IoT; internet of things; patient health monitoring; cloud; Arduino; security.
    DOI: 10.1504/IJGUC.2019.10022672
     
  • Facial expression recognition using geometric features and modified hidden Markov model   Order a copy of this article
    by Mayur Rahul, Narendra Kohli, Rashi Agarwal, Sanju Mishra 
    Abstract: This work proposes a geometric feature-based descriptor for efficient Facial Expression Recognition (FER) that can be used for better human-computer interaction. Although lots of research has been focused on descriptor-based FER still different problems have to be solved regarding noise, recognition rate, time and error rates. The Japanese Female Facial Expression (JAFFE) data sets help to make FER more reliable and efficient as pixels are distributed uniformly. The proposed system introduces novel geometric features to extract important features from the images and layered Hidden Markov Model (HMM) as a classifier. The layered HMM is used to recognised seven facial expressions i.e., anger, disgust, fear, joy, sadness, surprise and neutral. The proposed framework is compared with existing systems where the proposed framework proves its superiority with the recognition rate of 84.7% with the others 85%. Our proposed framework is also tested in terms of recognition rates, processing time and error rates and found its best accuracy with the other existing systems.
    Keywords: geometric features; hidden Markov model; state sequences; human-computer interaction; acoustic state model; sequential data; principle component analysis.
    DOI: 10.1504/IJGUC.2019.10022683
     
  • An autonomic mechanism based on ant colony pattern for detecting the source of incidents in complex enterprise systems   Order a copy of this article
    by Kamaleddin Yaghoobirafi, Eslam Nazemi 
    Abstract: In complex enterprises, various events such as failure of a server, malfunction of an application etc. may happen. In many cases, these events are caused by a change or an incident in a resource which belongs to another layer of information technology architecture. This makes the detection of complex events very difficult. In this paper, a mechanism is proposed based on pheromone deposition pattern for detecting the main source of failures and deficiencies in any position in the information technology architectural layers and recognising appropriate alternative solutions. It is expected that this mechanism facilitates the coordination between the resources which are not digitally represented. For sake of evaluation, two case studies are considered which investigate the inter-layer adaptation scenarios. The results show that the adaptation process can be done in less time and with more scalability with utilisation of the proposed mechanism in comparison with classic approaches.
    Keywords: autonomic computing; self-adaptive; enterprise architecture; complex enterprise systems; pheromone; coordination mechanism; cross-layer; ant colony; decentralise; event.
    DOI: 10.1504/IJGUC.2019.10022685
     
  • Evaluation prediction techniques to achievement an optimal biomedical analysis   Order a copy of this article
    by Samaher Al-Janabi, Muhammed Abaid Mahdi 
    Abstract: Intelligent analysis of prediction data mining techniques is widely used to support optimising future decision-making in many different fields including healthcare and medical diagnoses. These techniques include Chi-squared Automatic Interaction Detection (CHAID), Exchange Chi-squared Automatic Interaction Detection (ECHAID), Random Forest Regression and Classification (RFRC), Multivariate Adaptive Regression Splines (MARS), and Boosted Tree Classifiers and Regression (BTCR). This paper presents the general properties, summary, advantages, and disadvantages of each one. Most importantly, the analysis depends upon the parameters that have been used for building a prediction model for each one. Besides, classifying those techniques according to their main and secondary parameters is another task. Furthermore, the presence and absence of parameters are also compared in order to identify the better sharing of those parameters among the techniques. As a result, the techniques with no randomness and mathematical basis are the most powerful and fast compared with the others.
    Keywords: biomedical analysis; data mining; prediction techniques; healthcare problem; parameters.
    DOI: 10.1504/IJGUC.2019.10020511
     
  • An intelligent water drops-based approach for workflow scheduling with balanced resource utilisation in cloud computing   Order a copy of this article
    by Mala Kalra, Sarbjeet Singh 
    Abstract: The problem of finding optimal solutions for scheduling scientific workflows in cloud environment has been thoroughly investigated using various nature-inspired algorithms. These solutions minimise the execution time of workflows, however may result in severe load imbalance among Virtual Machines (VMs) in cloud data centres. Cloud vendors desire the proper utilisation of all the VMs in the data centres to have efficient performance of overall system. Thus, load balancing of VMs becomes an important aspect while scheduling tasks in cloud environment. In this paper, we propose an approach based on Intelligent Water Drops (IWD) algorithm to minimise the execution time of workflows while balancing the resource utilisation of VMs in cloud computing environment. The proposed approach is compared with a variety of well-known heuristic and meta-heuristic techniques using three real-time scientific workflows, and experimental results show that the proposed algorithm performs better than these existing techniques in terms of makespan and load balancing.
    Keywords: workflow scheduling; intelligent water drops algorithm; cloud environment; evolutionary computation; directed acyclic graphs; load balancing; balanced resource utilisation; optimisation techniques.
    DOI: 10.1504/IJGUC.2019.10022640
     
  • The energy consumption laxity-based algorithm to perform computation processes in virtual machine environments   Order a copy of this article
    by Tomoya Enokido, Dilawaer Duolikun, Makoto Takizawa 
    Abstract: Server cluster systems equipped with virtual machines are widely used to realise scalable and high-performance computing systems. In order to satisfy application requirements like response time, processing loads of virtual machines have to balance with one another in a server cluster. In addition to achieve the performance objectives, the total electric energy of a server cluster to perform application processes has to be reduced. In this paper, the Energy Consumption Laxity Based (ECLB) algorithm is proposed to allocate computation type application processes to virtual machines in a server cluster so that the total electric energy of the server cluster and response time of each process can be reduced. We evaluate the ECLB algorithm compared with basic Round-Robin (RR) algorithm. Evaluation results show the average total electric energy of a server cluster and average response time of each process in the ECLB algorithm can be more reduced than in the RR algorithm.
    Keywords: green computing; virtual machines; energy-efficient server cluster systems; power consumption models; energy-efficient load balancing algorithms.
    DOI: 10.1504/IJGUC.2019.10022641
     
  • A new bi-matrix game model with fuzzy payoffs in credibility space   Order a copy of this article
    by Cunlin Li, Ming Li 
    Abstract: Uncertain theory based on expert's evaluation and non-additive measure is introduced to explore the bi-matrix game with the uncertain payoffs. The uncertainty space based on the axiom of the uncertain measures is presented. Some basic characteristics of uncertain events are described and the expected value of the uncertain variables is given in uncertainty space. A new model of bi-matrix game with uncertain payoffs is established and its equivalent strategy is given. Then, we develop an expected model of uncertain bi-matrix games and define the uncertain equilibrium strategy of uncertain bi-matrix games. By using the expected value of uncertain variable, we transform the model into a linear programming, the expected equilibrium strategy of the uncertain bi-matrix games is identified through solving linear equations.
    Keywords: (uncertain) bi-matrix game; uncertain measure; expected Nash equilibrium strategy.
    DOI: 10.1504/IJGUC.2019.10022642
     
  • An efficient content sharing scheme using file splitting and differences between versions in hybrid peer-to-peer networks   Order a copy of this article
    by Toshinobu Hayashi, Shinji Sugawara 
    Abstract: This paper proposes an efficient content sharing strategy using file splitting and difference between versions in hybrid Peer-to-Peer (P2P) networks. In this strategy, when a user requests a content item, he/she can get it from the network by retrieving the other version of the content item and the difference from the requested version, if the obtaining cost of the requested version is expensive. This way of content sharing can be expected to accomplish effective and flexible operation. Furthermore, efficient utilisation of a peer's storage capacity is achieved by splitting each replica of a content item into several small blocks and storing them separately in the plural peers.
    Keywords: content sharing; file splitting; difference of versions; hybrid peer-to-peer.
    DOI: 10.1504/IJGUC.2019.10022665
     
  • Fog computing with original data reference function   Order a copy of this article
    by Tsukasa Kudo 
    Abstract: In recent years, since large amounts of data are being transferred to the cloud server because of the evolution of the Internet of Things (IoT), problems such as the network bandwidth restrictions and sensor feedback control delays have appeared. For these limitations, fog computing, in which the primary processing of sensor data is performed at the fog node, and only the results are transferred to the cloud server, has been proposed. However, in this method, when the original sensor data are necessary for the analysis in the cloud server, the data are missing. For this problem, I propose a data model, in which the original sensor data are stored at the fog node with a distributed database. Furthermore, the performance of this data model is evaluated, showing the original data reference from the cloud server can be executed efficiently, particularly in the case of installing multiple fog nodes.
    Keywords: IoT; internet of things; fog computing; edge computing; distributed database; NoSQL database; MongoDB; data model.
    DOI: 10.1504/IJGUC.2019.10022667
     

Special Issue on: Current Trends in Ambient Intelligence-Enabled Internet of Things and Web of Things Interface Vehicular Systems

  • Hybrid energy-efficient and QoS-aware algorithm for intelligent transportation system in internet of things   Order a copy of this article
    by N.N. Srinidhi, G.P. Sunitha, S. Raghavendra, S.M. Dilip Kumar, Victor Chang 
    Abstract: The Internet of Things (IoT) consists of a large number of energy compel devices that are prefigured to progress the effective competence of several industrial applications. It is essential to reduce the energy use of every device deployed in the IoT network without compromising the quality of service (QoS) for intelligent transportation systems. Here, the difficulty of providing the operation between the QoS allocation and the energy competence for the intelligent transportation system is deliberated. To achieve this objective, a multi-objective optimisation problem to accomplish the aim of estimating the outage performance of the clustering process and the network lifetime is devised. Subsequently, a Hybrid Energy-Efficient and QoS-Aware (HEEQA) algorithm that is a combination of quantum particle swarm optimisation (QPSO) along with improved non-dominated sorting genetic algorithm (NGSA) to achieve energy balance among the devices is proposed, and later the MAC layer parameters are tuned to reduce further the energy consumption of the devices. NSGA is applied to solve the problem of multi-objective optimisation and the QPSO algorithm is used to find the optimal cooperative nodes and cluster head in the clusters. The simulation outcome has put forward that the HEEQA algorithm has attained better operation balance between the energy competence and the QoS provisioning in the clustering process by minimising the energy consumption, delay, transmission overhead and maximising network lifetime, throughput and delivery ratio and is best suited for intelligent transportation application.
    Keywords: energy efficiency; intelligent transportation system; IoT; network lifetime; QoS.

  • Analysing control plane scalability issue of software-defined wide area network using simulated annealing technique   Order a copy of this article
    by Kshira Sahoo, Somula Ramasubbareddy, B. Balamurugan, B. Vikram Deep 
    Abstract: In Software Defined Networks (SDN), the decoupling of the control logic from the data plane enables vendor-independent policies, programmability, and provide other numerous advantages. However, since its inception, SDN is a subject of a wide range of criticism mainly related to the scalability issues of the control plane. To address these limitations, recent architectures have supported the implementation of multiple SDN controllers. Usage of multiple controllers in the network arises controller placement problem (CPP). The placement problem is a major issue for wide area networks because, while placing the controllers, significant strategies need to be considered. In most of the placement strategies, authors focused on propagation latency, because it is a critical factor in real networks. In this paper, the placement problem has formulated as an optimisation problem and the Simulated Annealing (SA) technique has been used to analyse the problem. This technique is a probabilistic single-solution-based search method that has influenced the annealing process of metallurgy engineering. Further, we investigate the behaviour of SA with four different neighboring solution techniques. The effectiveness of the algorithms was carried out on TataNld topology and implemented using MATLAB simulator.
    Keywords: software-defined networks; scalability; controller placement problem; simulated annealing.

  • Energy-aware multipath routing protocol for Internet of Things using network coding techniques   Order a copy of this article
    by S. Sankar, P. Srinivasan, Somula Ramasubbareddy, B. Balamurugan 
    Abstract: Energy conservation is a significant challenge in the Internet of Things (IoT), as it connects resource-constrained devices. The routing plays a vital role in transferring the data packets from the source to the destination. In Low Power and Lossy Networks (LLN), the existing routing protocols use the single routing metric, composite routing metric and opportunistic routing technique, to select the parent for the data transfer. However, the packet loss occurs, owing to the bottleneck of nodes nearby the sink and data traffic during the data transfer. In this paper, we propose an energy-aware multipath routing protocol (EAM-RPL) to prolong the network lifetime. The multipath model establishes multiple paths from the source node to the sink. In EAM-RPL, the source node applies the randomised linear network coding to encode the data packets and it transmits the data packets into the next level of cluster nodes. The intermediate nodes receive the encoded data packets from the source node and it forwards to the next cluster of nodes. Finally, the sink node receives the data packets and it decodes the original data packet sent by the source node. The simulation is conducted using COOJA network simulator. The effectiveness of EAM-RPL is compared with the RPL protocol. The simulation result shows that the proposed EAM-RPL improves the packet delivery ratio by 3-5% and prolongs the network lifetime by 5-10%.
    Keywords: Internet of Things; network coding; IPv6 routing protocol; low power and lossy networks; multipath routing.

  • Dynamic group key management scheme for clustered wireless sensor networks   Order a copy of this article
    by Vijaya Saraswathi Redrowthu, L. Padma Sree, K. Anuradha 
    Abstract: Group key management is a technique to establish a shared group key, between the cluster head and sensor nodes, for multiple sessions in a clustered network environment. The common use of this established group key (also termed as conference key) is to permit users to encrypt and decrypt a particular broadcast message that is meant for the total user group. In this work, we propose a cluster-based dynamic group key management protocol that is based on public key cryptography. Cluster head initiates establishment of a group key to the sensor nodes efficiently and achieves secure communication. Later, the computation of the common group key is performed by each sensor node. Group members have functionality to join and leave from particular communication along with this, other nodes, equal to threshold compute new conference key without involvement of cluster head. The proposed protocol is investigated in terms of security and complexity analysis using network simulator NS-2.
    Keywords: key management; group key management; wireless networks; privacy; public key cryptography; network simulator.

  • Intrusion detection technique using coarse Gaussian SVM   Order a copy of this article
    by Bhoopesh Singh Bhati, C.S. Rai 
    Abstract: In the new era of internet technology, everybody is transferring the data from place to place through the internet. As internet technology is improving, different types of attack have also increased. To detect the attacks it is important to protect transmitted information. The role of Intrusion Detection System (IDS) is imperative to detect various types of attack. Researchers have proposed numerous theories and methods in the area of IDS, the research in area of intrusion detection is still going on. In this paper, a Coarse Gaussian Support Vector Machine (CGSVM) based intrusion detection technique is proposed. The proposed method has four major steps, namely data collection, preprocessing and studying data, training and testing using CGSVM, and decisions. In implementation, KDDcup99 datasets are used as a benchmark and MATLAB programming environment is used. The results of the simulation are represented by Receiver Operating Characteristics (ROC) and confusion matrix. Here, the proposed method achieved high detection rates: 99.99%, 99.95%, 99.53%, 99.19%, and 90.57% for DOS, normal, probe, R2L, and U2R, respectively.
    Keywords: information security; intrusion detection; machine learning; CGSVM.

  • Investigation of multi-objective optimisation techniques to minimise the localisation error in wireless sensor networks   Order a copy of this article
    by Harriet Puvitha, Saravanan Palani, V. Vijayakumar, Logesh Ravi, V. Subramaniyaswamy 
    Abstract: Wireless Sensor Networks (WSN) play a major role in remote sensing environments. In recent trends, sensors are used in various wireless technologies owing to their smaller size, cheaper rates and ability to communicate with each other to create a network. The sensor network is the convergent technology of microelectronic and electromechanical technologies. The localisation process can determine the location of each node in the network. Mobility-assisted localisation is an effective technique for node localisation using a mobility anchor. The mobility anchor is also used to optimise the path planning for the location-aware mobile node. In this proposed system, a multi-objective method is proposed to minimise the distance between the source and the target node using the Dijkstra algorithm with obstacle avoidance. The Grasshopper Optimisation Algorithm (GOA), and the Butterfly Optimisation Algorithm (BOA) based multi-objective models are implemented along with obstacle avoidance and path planning. The proposed system maximises the localisation accuracy. Also it minimises the localisation error and the computation time compared with existing systems.
    Keywords: localisation models; grasshopper optimisation; butterfly optimisation; Dijkstra; path planning.