Forthcoming articles

International Journal of Bio-Inspired Computation

International Journal of Bio-Inspired Computation (IJBIC)

These articles have been peer-reviewed and accepted for publication but are pending final changes, are not yet published and may not appear here in their final order of publication until they are assigned to issues. Therefore, the content conforms to our standards but the presentation (e.g. typesetting and proof-reading) is not necessarily up to the Inderscience standard. Additionally, titles, authors, abstracts and keywords may change before publication. Articles will not be published until the final proofs are validated by their authors.

Forthcoming articles must be purchased for the purposes of research, teaching and private study only. These articles can be cited using the expression "in press". For example: Smith, J. (in press). Article Title. Journal Title.

Articles marked with this shopping trolley icon are available for purchase - click on the icon to send an email request to purchase.

Register for our alerting service, which notifies you by email when new issues are published online.

Open AccessArticles marked with this Open Access icon are freely available and openly accessible to all without any restriction except the ones stated in their respective CC licenses.
We also offer which provide timely updates of tables of contents, newly published articles and calls for papers.

International Journal of Bio-Inspired Computation (29 papers in press)

Special Issue on: Artificial Intelligence Facilities Smart Cities Development

  •   Free full-text access Open AccessA Novel Squeeze YOLO-based Real-time People Counting Approach
    ( Free Full-text Access ) CC-BY-NC-ND
    by Peiming Ren, Lin Wang, Wei Fang 
    Abstract: Real-time people counting based on videos is one of the most popular projects in the construction of smart cities. To develop an accurate people counting approach, deep learning can be used as it greatly improves the accuracy of machine learning based approaches. To this end, we have previously proposed an accurate YOLO (You Only Look Once) based People Counting approach, dubbed YOLO-PC. However, the model of YOLO-PC was very large with an excessive number of parameters, thus it requires large storage space on the device and makes transmission on Internet a time consuming task. In this paper, a new real-time people counting method named as Squeeze YOLO-based People Counting (S-YOLO-PC) is proposed. S-YOLO-PC uses the fire layer of SqueezeeNet to optimize the network structure, which reduces the number of parameters used in the model without decreasing its accuracy. Based on the obtained the experimental results, S-YOLO-PC reduces the number of model parameters by 11.5% and 9% compared to YOLO and YOLO-PC, respectively. S-YOLO-PC can also detect and count people with 41 frames per second (FPS) with the average precision (AP) of person of 72%.
    Keywords: Model compression; People counting; Boundary-selection; YOLO; SqueezeNet.
    DOI: 10.1504/IJBIC.2019.10024002
  • SmartGC: A Software Architecture for Garbage Collection in Smart Cities   Order a copy of this article
    by Miguel Ramalho, Rosaldo Rossetti, Nelio Cacho, Arthur Souza 
    Abstract: With populations in cities increasing in a very accelerated pace, the problem of collecting and handling the waste produced becomes a major concern to governmental authorities. Indeed, the amount of garbage they create is increasing even faster than their populations, worsening the problem and turning garbage collection into a very challenging task. In this paper, we see garbage collection through the spectacles of the emerging concept of Smart Cities, accounting for new performance measures defined on the grounds of sustainability, energy efficiency, optimum resource allocation, and low carbon emission and footprint. We thus devise a smart garbage collection management system, coined SmartGC, whose architecture is detailed and explained. Abstracting out garbage collection from a smart mobility perspective, the underlying methodology supporting the proposed architecture relies on the concept of Artificial Transportation Systems. For the sake of demonstration, we have implemented a routing strategy to generate improved itineraries accounting for the content of garbage containers, which are continuously monitored through IoT-based smart meters. Also, we discuss on how the architecture is instantiated and integrated into the smart city agenda of Natal, a medium-size capital in Northeastern Brazil.
    Keywords: smart cities; garbage collection; artificial transportation systems; software architecture.

  • Time-to-Contact Control: Improving Safety and Reliability of Autonomous Vehicles   Order a copy of this article
    by Liang Wang, Berthold K.P. Horn 
    Abstract: Under traditional car-following control, i.e. human drivers' behavior, the stability condition of traffic system is not satisfied in general. For safety and reliability of autonomous vehicles, additional danger warning system must be used in the adaptive cruise control system to prevent inevitable potential collisions. One reasonable quantity of evaluating potential collisions is time to contact (TTC): how soon will potential collision occur? In this paper, we provide TTC feedback control to improve safety and reliability of autonomous vehicles, and show the effectiveness of TTC feedback. TTC can be estimated by machine vision technics with single uncelebrated camera (i.e. passive sensors). We provide detailed mathematical analysis and algorithmic implementation. The machine vision based TTC algorithm is pretty fast such that the whole system can be implemented on Android smart phones running in real-time. Moreover, it's not trial to estimate relative velocity by differentiating the measured distance between cars with respect to time, because inevitable measurement noise in the distance measurements will be amplified by the derivative operation. The time-to-contact based algorithm provides an alternative approach to estimating the relative velocity, which can also be fused with measurements from other active sensors, if desired.
    Keywords: Autonomous vehicles; time to contact (TTC); danger detection; machine visionp; android smartphones.

Regular Issues

  • Solving many-objective optimization problems by an improved particle swarm optimization approach and a normalized penalty method   Order a copy of this article
    by Dexuan Zou, Fei Wang, Nannan Yu, Xiangyong Kong 
    Abstract: The problem with more than three objectives is commonly known as many-objective optimization problem (MOP), and it has drawn much attention from researchers because of its big potential in the real word. In this paper, a novel modified particle swarm optimization (NMPSO) approach is presented to handle a kind of MOP called many-objective knapsack (MOK) problem. NMPSO relies on the global best particle to guide the search of all particles in each generation, which can enhance the convergence of NMPSO. Furthermore, a randomization-based mutation is adopted to overcome the premature convergence which usually occurs in the late evolutionary optimization process. In addition to many objective functions, MKP consists of several inequality constraints, and all the objective functions should be minimized under the precondition that all the inequality constraints are satisfied. A normalized penalty method (NPM) is devised to reach a compromise between objective functions and inequality constraints, which enables particles to explore solution space more precisely. In summary, the contribution of our work can be summarized in two aspects: (1) A more powerful approach called NMPSO is proposed. (2) A reasonable NPM is devised. Five improved PSOs are used to handle the MOKs with different number of objective functions and dimensions. Experimental results show that NMPSO has higher efficiency than the other four approaches. It uses the lowest computational cost, and achieves the smallest penalty function values for most MKPs.
    Keywords: Many-objective optimization problem; Novel modified particle swarm optimization; Many-objective knapsack problem; Randomization-based mutation; Normalized penalty method.

  • Quantum Inspired Monarch Butterfly Optimization for UCAV Path Planning Navigation Problem   Order a copy of this article
    by Jiao-Hong Yi 
    Abstract: As a complicated high-dimensional optimization problem, path planning navigation problem for Uninhabited Combat Air Vehicles (UCAV) is to obtain a shortest safe flight route with different types of constrains under complicated combating environments. Monarch butterfly optimization (MBO) is a highly promising swarm intelligence algorithm. Since then, though it has successfully solved several challenging problems, MBO may be trapped into local optima sometimes. In order to improve the performance of MBO, quantum computation is firstly incorporated into the basic MBO algorithm, and a new quantum inspired MBO algorithm is then proposed, called QMBO. In QMBO, certain number of the worst butterflies are updated by quantum operators. In this paper, the UCAV path planning navigation problem is modeled into an optimization problem, and then its optimal path can be obtained by the proposed QMBO algorithm. In addition, B-Spline curves are utilized to further smoothen the obtained path and make it more feasible for UCAV. The UCAV path obtained by QMBO is compared with the basic MBO, and the experimental results show that QMBO can find much shorter path than MBO.
    Keywords: Unmanned combat air vehicle; Path planning navigation; Monarch butterfly optimization; Quantum computation; B-Spline curve.

  • An ISO/IEC 24745 compliant ECG template protection based on linear prediction coding   Order a copy of this article
    by Emna Kalai, Adel Benzina 
    Abstract: An ECG (ElectroCardioGram) biometric system can be wearable and offers continuous authentication. It is suitable for medical applications and has proved its benefits over traditional biometric systems. In this paper, we propose a solution to protect the ECG reference template from eavesdroppers spying the wireless link (between the wearable device and the target application) to preserve the privacy of the ECG reference template. The scheme fulfills the ISO/IEC 24745 biometric template protection requirements. The proposed solution is based on linear prediction coding of the ECG extracted features. We add a specifc secret key to enhance unlinkability and renewability of the protected template. We evaluate the authentication performance of the unprotected and the protected system with a large database. Theoretical and empirical evaluations show that the proposed system outstands the fuzzy commitment scheme in terms of algorithmic complexity and energy consumption while preserving the same authentication performances proving its effectivness, and effciency.
    Keywords: E-health; Authentication; ECG security and privacy; ISO/IEC 24745; Time complexity; Energy consumption.

  • An Ant Based New Clustering Model for Graph Proximity Construction   Order a copy of this article
    by Nesrine Masmoudi, Hanene Azzag, Mustapha Lebbah, Cyrille Bertelle, Maher Ben Jemaa 
    Abstract: This paper presents a new concept for an artificial ant model to build proximity graphs. We tried first to introduce the state of art of different clustering methods relying on the swarm intelligence and the ants numerous abilities. Our new bio-inspired model is based on artificial ants over a dynamic graph of clusters using colonial odors and pheromone based reinforcement process. Our non-hierarchical algorithm, called CL-Ant, where each ant represents one datum and its moves aim to create homogeneousrndata groups that evolve together in a proximity graph environment. In this model, the artificial ant performs two steps: following the maximum pheromone path rate, and then, integrating to neighbors clusters using simple localization rules. Afterwards we present an incremental extension, called CL-AntInc to treat data streams, which allows building graphs in an incremental way. Our survey properties were studied thoroughly and a detailed analytical comparison of our results with those obtained by other methods was provided. These algorithms were evaluated and validated using real databases extractedrnfrom the Machine Learning Repository.
    Keywords: swarm intelligence; artificial ants; data clustering; data streams; proximityrngraph.

  • Bio-Inspired Innovative Green Fault Recovery Modelling For Macro-Femtocell Mobile Network   Order a copy of this article
    by Sourav Hati, Debashis De, Anwesha Mukherjee 
    Abstract: In an overlay macro-femtocell mobile network, the femtocells are allocated within the macrocell coverage in order to provide good Quality of Service at indoor environment. Within this network, when a femtocell gets damaged, the adjacent lightly loaded femtocells are searched and the users of the damaged cell are handed over to those lightly loaded adjacent femtocells. However, this increases latency, power consumption and the probability of call dropping. To overcome these difficulties, we propose a Red Blood Cell life cycle based fault recovery management method which utilizes femtocell-to-macrocell and then macrocell-to-femtocell handover to reduce the probability of call dropping, power consumption and latency. We introduce a new database, femtoDB which is stored inside the cloud to be used as a potential repertoire capable to store the femtocell IDs with their users information in an overlay macro-femtocell network. Based on the information maintained in femtoDB, the macrocell decides to which femtocell the users of the damaged femtocell to be handed over. Simulation results illustrate that the proposed recovery management method reduces the probability of call dropping, power consumption and latency by approximately ~3%, ~75% and ~60% respectively.
    Keywords: Red Blood Cell; Femtocell; Macrocell; Call dropping; Power consumption; Latency;.

  • Dynamic Economic Emission Dispatch Problem with Renewable Integration Focusing on Deficit Scenario in India   Order a copy of this article
    by Hithu Anand, Rengaraj Ramasubbu 
    Abstract: Present scenario power grid has increased penetration of renewable energy sources (RESs). RESs are clean sources of energy and power production from them with minimal emission is a national target. Already, increased carbon footprint has put nations into jeopardy. Nowadays to study the benefits due to RESs in power system is of greater importance. Stochastic nature of RESs made it difficult to manage power dispatch scenario. Dynamic power demand added even more difficulty in obtaining real time economic schedule of generation dispatch. A test system of ten generator and emission dispatch with wind turbine (WT) and photo voltaic (PV) having dynamic load for 24 hours is economized. Stochastic method of particle swarm optimization (PSO) is compared with anti-predatory particle swarm optimization (APSO). It is identified that APSO method gives a better economy with reduced emission for the given problem.
    Keywords: renewable energy; dynamic economic emission dispatch; wind power; solar power; anti-predatory particle swarm optimization.

  • Integrated deteriorating maintenance and patient scheduling for single medical device with heuristic algorithm   Order a copy of this article
    by Liu Qinming 
    Abstract: This paper aims to propose a two-phase model integrated patient scheduling and medical device maintenance to improve their reliability, reduce operating costs, and increase operating efficiency. In this paper, one patient scheduling problem with time-window deteriorating maintenance is studied. The objective is to minimize the maximum tardiness of all patients. First, a two-phase mathematical model is developed to characterize the problem. One model is used to solve the lower bound of the number of maintenance activities, and the other is used to obtain the patient scheduling solution. Then, one heuristic is developed for the problem. Finally, numerical experiments can be performed to indicate the efficiency and effectiveness of the proposed methods. The results show that the proposed methods have a better performance for the patient scheduling problem and can be able to obtain one good solution in a short computation time. Few studies have been carried out to integrate decisions between patient scheduling and device maintenance. Their considerations are either incomplete or not realistic enough. A more comprehensive and realistic two-phase model is proposed in this paper.
    Keywords: Patient scheduling; Maximum tardiness; Medical device; Time-window deteriorating maintenance; Virtual maintenance.

  • Machine vision for characterization of some phenomic features of plant parts in distinguishing varieties A review   Order a copy of this article
    by Nachiket Kotwaliwale, Karan Singh, Shyamal Kumar Chakrabarty, Monika Joshi, Abhimannyu Kalne, Krishna Kumar Gangopadhyay, Nabarun Bhattacharyya, Amitava Akuli, Gopinath Bej, Madhvi Tiwari, Divya Aggarwal 
    Abstract: Phenomic features of plant parts are important varietal traits for all crops and form part of the DUS (Distinctiveness, Uniformity and Stability) characterization protocols. Manual methods for measurement of these traits are expensive, less consistent and time consuming hence machine vision has been used in recent researches. The machine vision systems employed for this purpose consist of acquisition systems (hardware) and image processing and analysis system (software). The area of machine vision has developed during last few decades during which there have been many improvements in the employed hardware and software. Major work has been reported on use of seed and fruit images; however images of other plant parts like leaves, roots, flowers etc. have also been used. A variety of techniques have been reported for analysis of features in order to distinguish among different crop varieties.
    Keywords: Machine vision; crop variety identification; phenomic traits.

  • Performance Analysis of Intrinsic Embedded Evolvable Hardware using Memetic and Genetic Algorithms   Order a copy of this article
    by Ranjith Chandrasekharan, Joy Vasantha Rani S.P 
    Abstract: This paper discusses the performance analysis of memetic and genetic algorithms (GA and MA) as the optimising strategy for the design of embedded evolvable hardware. The optimisation algorithm with the fitness evaluation searches for the best configuration to evolve the hardware model. Here, an experimental setup is carried to intrinsically evolve combinational circuits to test the performance of MA and GA. The complete evaluation and evolution is built on a single Virtex 6 (XC6VLX240T-1FFG1156) ML605 Evaluation Kit FPGA. A Virtual Reconfigurable Architecture (VRA) with the hardware fitness circuit is modelled as a second reconfigurable layer over the Field Programmable Gate Array (FPGA) to configure the target combinational logic. A FPGA soft core processor evaluates the search algorithm and the best solutions are utilised for the hardware evolution. The experimentation results showed that convergence and evolution time of MA was faster compared to GA when the search space was large. Thus, proving MA is a better option for large search space evaluations for evolvable hardware architectures.
    Keywords: evolvable hardware; EHW; embedded evolvable hardware; evolutionary algorithm; genetic algorithm; memetic algorithm; MicroBlaze processor; VRA; Virtual Reconfigurable Architecture; evolution speed; evaluation time; combinational circuits; intrinsic evolution; Bio-Inspired algorithm.

  • A Memetic Imperialist Competitive Algorithm with Chaotic Maps for Multilayer Neural Network Training   Order a copy of this article
    by Seyed Jalaleddin Mousavirad, Azam Asilian Bidgoli, Hossein Ebrahimpour-komleh, Gerald Schaefer 
    Abstract: The performance of artificial neural networks (ANNs) is largely dependent on the success of the training process. Gradient descent-based methods are the most widely used training algorithms but have drawbacks such as ending up in local minima. One approach to overcome this is to use population-based algorithms such as the imperialist competitive algorithm (ICA) which is inspired by the imperialist competition between countries. In this paper, we present a new memetic approach for neural network training to improve the efficacy of ANNs. Our proposed approach -- Memetic Imperialist Competitive Algorithm with Chaotic Maps (MICA-CM) -- is based on a memetic ICA and chaotic maps, which are responsible for exploration of the search space, while back-propagation is used for an effective local search on the best solution obtained by ICA. Experiment results confirm our proposed algorithm to be highly competitive compared to other recently reported methods.
    Keywords: Imperialist competitive algorithm; Neural network training; Chaotic map; Back-propagation algorithm; memetic computing.

    by Sudha M N, Selvarajan S, Suganthi M 
    Abstract: Feature selection plays an important role in breast cancer classification. Feature selection identifies the most informative feature subset from feature set that can accurately classify the given data. The texture features, intensity histogram features, shape features and radial distance features have been extracted from Mammogram image and the optimal feature set has been obtained using improved lion optimization algorithm (ILOA). The overall accuracy of a classifier is used as a fitness value for ILOA. In the proposed work minimum distance classifier, K-Nearest Neighbor Classifier and Support Vector machine have been used. The proposed ILOA technique can efficiently find small feature subsets and able to classify the breast cancer data set with a very excellent accuracy. The performance of the ILOA is compared with the Cuckoo Search and Harmony Search. Experimental result shows that the result obtained from minimum distance classifier through ILOA is more accurate than the other algorithm. These algorithms can provide valuable information to the physician in medical pathology.
    Keywords: Breast Cancer Classification; Feature Extraction; Improved Lion Optimization Algorithm; Cuckoo Search and Harmony Search.

  • A New Replica Placement Strategy Based on Multi-objective Optimization for HDFS   Order a copy of this article
    by Wang Yang, Zhang Qingfu, Li Yangyang, Dhish Saxena 
    Abstract: Distributed storage systems like the Hadoop Distributed File System (HDFS) constitute the core infrastructure of cloud platforms which are well poised to deal with big-data. An optimized HDFS is critical for effective data management in terms of reduced file service time and access latency, improved file availability and system load balancing. Recognizing that the file-replication strategy is key to an optimized HDFS, this paper focuses on the file-replica placement strategy while simultaneously considering storage and network load. Firstly, the conflicting relationship between storage and network load is analyzed and a bi-objective optimization model is built, following which a multi-objective optimization memetic algorithm based on decomposition (MOMAD) and its improved version are used. Compared to the default strategy in HDFS, the file-replica placement strategies based on multi-objective optimization provide more diverse solutions. And competitive performance could be obtained by the proposed algorithm.
    Keywords: Hadoop; HDFS; replica placement; multi-objective optimization; memetic algorithm.

  • Adaptive Neighborhood Size Adjustment in MOEA/D-DRA   Order a copy of this article
    by Meng Xu 
    Abstract: The multiobjective optimization algorithms based on decomposition(MOEA/D) is a well-known multiobjective optimization algorithms(MOEAs). MOEA/D was proposed by Zhang and Li in 2007s. MOEA/D decomposes a multiobjective problem into a set of scalar single objective subproblems using the aggregation function and the evolutionary operator. The variant of the dynamic resource allocation strategy in MOEA/D(MOEA/D-DRA) has the outstanding performance on CEC2009, the MOEA/D-DRA using the strategy of resource allocation. It cares about the convergence and ignores the diversity. MOEA/D-DRA is very sensitive to the neighbourhood size. In this paper, we present a new enhanced MOEA/D-DRA strategy based on the adaptive neighbourhood size adjustment(MOEA/D-DRA) to increase the diversity. It focuses on the solutions density around of subproblems. The experiment results demonstrate that MOEA/D-ANA strategy performs the best compared with other five classical MOEAs on the CEC2009 test instances.
    Keywords: MOEA/D; diversity; Neighborhood; CEC2009 test instances;.

  • Parallel Implementation of Genetic Algorithm on FPGA using Vivado High Level Synthesis   Order a copy of this article
    by Eman Alqudah, Amin Jarrah 
    Abstract: Genetic Algorithm (GA) is one of most popular evolutionary search algorithms that simulates natural selection of genetic evolution for searching solution to arbitrary engineering problems. However, it is computationally intensive and will become a limiting factor for evolving solution to most of the real life problems as it involves large number of parameters that needs to be determined. Fortunately, there are some parallel platforms such as Field-Programmable Gate Array (FPGA) that can be adopted to overcome this constrains by improving its latency. So, efficient parallel implementation of GA was proposed where each step of GA was exploited to improve its computational task. Moreover, many optimization and parallelization techniques were adopted and applied to achieve high speed up. The results show that 43 speed up is achieved compared with the typical one. Moreover, higher speed up can be achieved with larger input size.
    Keywords: Genetic Algorithm (GA); Field Programmable Gate Array (FPGA); Vivado HLS tool; parallel architecture; optimization techniques.

  • Fractional L   Order a copy of this article
    by Redouane Boudjemaa, Diego Oliva, Fatima Ouaar 
    Abstract: A well-known metaheuristic is the Bat Algorithm (BA), which consists of an iterative learning process inspired by bats echolocation behaviour in searching for prays. Basically, the BA uses a predefined number of bats that collectively move on the search space to find the global optimum. This article proposes the Fractional L
    Keywords: Fractional calculus; Bat algorithm; Lévy Flight; Nonparametric statistical tests.

  • A Modified Bat Algorithm With Torus Walk for Solving Global Optimization Problems   Order a copy of this article
    by Waqas Bangyal, Jamil Ahmad, Hafiz Tayyab Rauf 
    Abstract: Bat algorithm (BA) has been widely used to solve the diverse kind ofrnoptimization problems. In accordance with the optimization problem, a balance between the two major components exploitation and exploration plays a significant role in metaheuristic algorithms. These algorithms can influence diversity, convergence and help to find an optimal solution efficiently. Particularly, recognizing the importance of diversityrnand convergence, several researchers have worked on the performance for the improvement of meta-heuristic algorithms. BA faces one of the major issues in high dimensions for numerical optimization problems. In our work, we proposed a new variant of BA by introducing the Torus walk (TW-BA) to solve this issue. To improve the local search capability instead of using the standard uniform walk, Torus walk is incorporated in this paper. Additionally, chaotic inertia weight is introduced to manage the local search capability. The simulation results performed on nineteen standard benchmark functions depicts the efficiency and effectiveness of TW-BA compared with the traditional BA, directional Bat Algorithm (dBA), Particle Swarm Optimization (PSO), Cuckoo Search via L`evy flights (CS), Harmony Search Algorithm(HS), Classical Differential Evolution (DE) and Standard Genetic Algorithm (GA). The experimental results show that the proposedrntechnique performed exceptionally better than the standard technique. Moreover, the outcome of our work presents a foresight on how the proposed technique highly impacts on the value of cost function, convergence, and diversity. The promising experimental result suggests the superiority of the proposed technique.
    Keywords: Torus Walk; Chaotic Inertia Weight; Exploitation; Exploration.

  • An enhanced genetic algorithm for the distributed assembly permutation flowshop scheduling problem   Order a copy of this article
    by Xin Zhang, Xiangtao Li, Minghao Yin 
    Abstract: The distributed assembly permutation flowshop scheduling problem (DAPFSP) is a new generalization of the distributed permutation flowshop scheduling problem (DPFSP) and the assembly flowshop scheduling problem (AFSP), aiming to minimise makespan. This production mode is more complicated and competitive in the real production process and includes two phases: production and assembly. Firstly, the production is conducted in several identical factories, and the production in each factory can be considered to a permutation flowshop scheduling problem (PFSP) with multi-machines. Then, the jobs produced in the first stage are assembled into final products. An enhanced population-based meta-heuristic genetic algorithm (GA) is proposed for this problem. A greedy mating pool is designed to select promising parents in the selection operation, and an effective crossover strategy is designed based on the local search for speeding up convergence. To enhance the exploitation capability, several different local search strategies are incorporated into the algorithm, which are based on two neighborhood structures. The exhaustive experiment and statistical analysis show that the proposed algorithms outperform the existing algorithms.
    Keywords: Distributed assembly scheduling; Permutation flowshop; Meta-heuristic; Genetic algorithm; Crossover; Local search.

  • Hybridizing Cuckoo Search Algorithm for Extracting the ODF maxima in spherical harmonic representation   Order a copy of this article
    by Mohammad Shehab, Mohammed Sh. Daoud, Hani Mahmouad AlMimi, Laith Mohammed Abualigah, Ahamad Tajudin Khader 
    Abstract: The Diffusion-Weighted Magnetic Resonance Imaging(DW-MRI) is a promising method for non-invasive investigation of anatomical connectivity in the human brain. Q-ball imaging (QBI) is a Diffusion MRI reconstruction technique which has been proven very successful in resolving multiple intravoxel fiber orientations in MRI (i.e., fiber crossing) based on the standard computation of the Orientation Distribution Function (ODF), which is a 3- dimension spherical function founded to detect the dominant fiber orientations in the underlying volume of a pixel (voxel). However, ODF still has a limitation in determining fiber directions which may be corrupted by neighbour directions. In this paper, we proposed a new method to solve the ODF problem by adapting the hybridization of the cuckoo search algorithm (i.e., global search) and bat algorithm (i.e., local search), namely, CSBA. The performance of the method is demonstrated by experiments in both synthetic and real data.
    Keywords: diffusion; MRI; ODF; CSA; BA; Optimization.

  • User Identification by Keystroke Dynamics Using Improved Binary Particle Swarm Optimisation   Order a copy of this article
    by Tong Wu, Kangfeng Zheng, Guangzhi Xu, Chunhua Wu, Xiujuan Wang 
    Abstract: As a kind of behavioural characteristic, keystroke feature selection is crucial to the accuracy of user identification using shallow machine learning algorithms. Filter and wrapper feature selection algorithms are the two most important methods. The information gain and particle swarm optimisation algorithm represent the two feature optimisation methods, respectively. In this paper, new hybrid binary particle swarm optimisation methods combined with information gain theory are proposed in association with opposite-based learning and distributed techniques. The converted information gain values act as weight coefficients to adaptively adjust the flight speed of particles. The support vector machine (SVM) algorithm is applied to evaluate the performance of feature optimisation in terms of user identification accuracy and feature reduction rate. Experimental results of three public keystroke datasets show that the proposed optimisation methods achieve better classification accuracy with fewer features than four existing optimisation methods. The analyses results also indicate that the correlations between three types of features are greatly impaired.
    Keywords: Binary particle swarm optimisation (BPSO); information gain; opposite-based learning; feature optimisation; user identification; keystroke dynamics; support vector machine (SVM).

  • A hybrid bio-inspired optimization approach for wirelength minimization of hardware tasks placement in Field Programmable Gate Array devices   Order a copy of this article
    by Premalatha Balasubramaniam, Uma Maheswari S 
    Abstract: In Computer Aided Design (CAD) flow of VLSI Circuits, Placement Process is an NP-Complete problem which requires an optimization approach to obtain the system performance better. The objective of the placement process is to reduce the wire length between the placed tasks with zero overlap. Fast response and better convergence algorithms are required to meet these desires. In this regard, bio-inspired optimization algorithms such as Genetic algorithm (GA) and Particle Swarm Optimization (PSO) algorithm have been considered in this paper to solve the issue. PSO is a robotic bio-inspired optimization procedure based on the swarm intelligence. The genetic algorithm is also a bio-inspired process based on natural selection and generates the solution to optimization problems. The fitness function is considered as cost function which is formulated to minimize the wire length with zero overlap. By using the salient features of these two algorithms, the optimized solution for placement problem have been obtained. In the first phase, the concept of GA has been applied to obtain optimized wire length with zero overlap between the task and the solution from Genetic Algorithm is taken as an input to the Particle Swarm Optimization to attain the enhanced optimized result. For experimentation, various Directed Data Flow Graphs (DDFGs) are randomly generated and the comparison is made between the individual GA, PSO and hybrid (GA-PSO) method. The hybrid approach using GA-PSO produces better experimental results in wire length minimization and hence outperforms than the others.
    Keywords: Hardware tasks placement; NP-Complete Problem; wirelength minimization; Reconfigurable FPGAs; bio-inspired optimization approach; Genetic Algorithm; GA; Particle Swarm Optimization; PSO.

  • Bat Algorithm with Weibull Walk for Solving Global Optimization and Classification Problems   Order a copy of this article
    by Hafiz Tayyab Rauf, Muhammad Hadi, Abdur Rehman 
    Abstract: Bat algorithm (BA) becomes the most widely employed meta-heuristic algorithm to interpret the diverse kind of optimization and real-world classification problems. Toward accordance between the classification and optimization problem, the stability and the endurance among the two principal components exploitation and exploration impersonate a meaningful role in the family of meta-heuristic algorithms. BA suffers from one of the influential challenges called local minima for numerical optimization and real-world classification problems. In this study, we carried out two modifications in the original BA and proposed a modified variant of BA called Bat Algorithm with Weibull walk (WW-BA) to solve the premature convergence issue. The first modification involves the introduction of Weibull descending inertia weight for updating the velocity of bats. The second modification approach updates the local search strategy of BA by replacing the Random walk with the Weibull Walk. The simulation performed on nineteen standard benchmark functions represents the competence and effectiveness of WW-BA compared with the traditional BA, Cuckoo Search via L
    Keywords: Bat Algorithm; Premature Convergence; Exploration; Exploitation; Weibull Walk; Inertia weight.

  • A privacy-preserving recommendation method based on multi-objective optimization for mobile users   Order a copy of this article
    by Chonghuan Xu 
    Abstract: Recommender systems have proven to be an effective technique to deal with information overload and mislead problems by helping users get useful and valuable information or objects from massive data. However, exploiting users preferences with recommendation algorithms lead to serious privacy risks, especially when recommender service providers are unreliable. An ideal recommender system should be both accurate, diverse and security. In this paper, we propose a private recommendation method which consists of a private collaborative filtering algorithm and a multi-objective evolutionary algorithm for mobile users. Experimental results demonstrate that even though the mobile users preferences are significantly obfuscated, our method is effective in terms of recommendation accuracy and diversity.
    Keywords: Recommender systems;Multi-objective optimization;Differential privacy;Mobile users.

  • Recognition of driver emergency braking behavior based on support vector machine optimized by memetic algorithm   Order a copy of this article
    by Shenpei Zhou, Bingchen Qiao, Haoran Li, Bin Ran 
    Abstract: Surface electromyography (sEMG) is one of the main information sources of human motion detection and has been widely used. The lower limb sEMG signal is introduced into the recognition model of driver emergency braking behavior, and the features from time domain, frequency domain and model parameters are extracted to construct a feature vector. In addition, to improve recognition accuracy, the data from conventional braking and accelerated shifting behaviors similar to the characteristics of emergency braking are synchronously collected. These three driving behaviors are identified by using support vector machine (SVM), and a memetic algorithm (MA) based on particle swarm optimization and hill climbing algorithm is proposed to optimize the parameters of SVM. The results show that the model based on SVM optimized by MA has better classification performance than that without optimization. The final recognition rate of emergency braking behavior of same individual is up to 92.3%, and that of different individuals can reach 85.6%. Moreover, the system can detect emergency braking 220 ms earlier than operating brake pedal. At 100 km/h driving speed, this amounts to reducing the braking distance by 6.1 m.
    Keywords: sEMG; emergency braking; SVM; parameter optimization; memetic algorithm; particle swarm optimization; hill climbing algorithm.

  • Performance-Aware Deployment of Streaming Applications in Distributed Stream Computing Systems   Order a copy of this article
    by Dawei Sun, Shang Gao, Xunyun Liu, Fengyun Li, Rajkumar Buyya 
    Abstract: Performance-aware deployment of streaming applications is one of the key challenging problems in distributed stream computing systems. We proposed a performance-aware deployment framework (Pa-Stream) for distributed stream computing systems. By addressing the important aspects of the framework, this paper makes the following contributions: (1) Investigated the performance-aware deployment of a streaming application over distributed and heterogeneous computing nodes, and provided a general application deployment model. (2) Demonstrated a streaming applications deployment scheme by proposing an artificial bee colony strategy that deploys applications vertices onto the best set of computing nodes; an incremental online redeployment strategy was used to redeploy the running application. (3) Developed and integrated Pa-Stream into Apache Storm platform. (4) Evaluated the fulfillment of low latency and high throughput objectives in a distributed stream computing environment. Experimental results demonstrate that the proposed Pa-Stream provided effective performance improvements on latency, throughput and resource utilization.
    Keywords: performance awareness; application deployment; stream computing; artificial bee colony algorithm; distributed system.

Special Issue on: New Trends in Many-Objective Optimisation

  • Lexi-search algorithm for one to many multidimensional bi-criteria unbalanced assignment problem   Order a copy of this article
    by Thenepalle Jayanth Kumar, Singamsetty Purusotham 
    Abstract: The classical assignment problem involves one-to-one assignment between the persons and jobs. However, most of the real world scenarios, it is hard to make a balance between persons and jobs, therefore the interest on the studies of unbalanced assignment problems continuously increased. This paper deals a one-to-many multidimensional unbalanced assignment problem with two conflicting objectives, in which the first objective minimizes the total processing time and the second objective maximizes the overall productivity/profit on performing n jobs by m (m<n) persons at distinct time horizons. In addition, there is a restriction that each job operates exactly one person whereas a person is permitted to perform more than one job at distinct time horizons only. The model is then formulated as a 0-1 integer linear programming problem. This model has potential applications in the context of scheduling, timetabling, human resource allocations, etc. An efficient deterministic pattern recognition technique based Lexi-search algorithm (LSA) is developed, which is capable of enumerating the Pareto optimal solutions. A numerical illustration is provided to understand the structure of the proposed LSA. A comparative study is performed between the LSA and the existing genetic algorithm (GA) on the relaxed version of the present model. The comparative results clearly show the superiority of the LSA over the existing GA. Furthermore, the proposed LSA is tested on distinct random test instances to assess its effectiveness and the results reveal that LSA is taking fairly less computational time.
    Keywords: multidimensional bi-criteria unbalanced assignment problem; Lexi-search algorithm; pattern recognition technique.

Special Issue on: Intelligent Simulation Optimisation for Complex Systems

  • Data-driven Pollution Source Location Algorithm in Water Quality Monitoring Sensor Networks   Order a copy of this article
    by Xuesong Yan 
    Abstract: Water pollution prevention has been a widely concerned issue for the safety of human lives. To this end, water quality monitoring sensors are introduced in the water distribution systems. Due to the limited budget, it is impossible to deploy sensors everywhere but a small number of sensors are deployed. From the sparse sensor data, it is important, but also challenging, to find out the pollution source location. Traditional methods may suffer from local optimum trapping or low localization accuracy. To address such problems, we propose a cooperative intelligent optimisation algorithm based pollution source location algorithm, which is a data-driven approach in simulation-optimisation paradigm. Through open-source EPANET simulator based experiments, we find out our proposed data-driven algorithm can effectively and efficiently localize the pollution location, as well as the pollution injection starting time, duration and mass.
    Keywords: sensor networks; pollution source location; simulation optimisation; cooperative optimisation algorithm.