Forthcoming articles

European Journal of Industrial Engineering

European Journal of Industrial Engineering (EJIE)

These articles have been peer-reviewed and accepted for publication but are pending final changes, are not yet published and may not appear here in their final order of publication until they are assigned to issues. Therefore, the content conforms to our standards but the presentation (e.g. typesetting and proof-reading) is not necessarily up to the Inderscience standard. Additionally, titles, authors, abstracts and keywords may change before publication. Articles will not be published until the final proofs are validated by their authors.

Forthcoming articles must be purchased for the purposes of research, teaching and private study only. These articles can be cited using the expression "in press". For example: Smith, J. (in press). Article Title. Journal Title.

Articles marked with this shopping trolley icon are available for purchase - click on the icon to send an email request to purchase.

Register for our alerting service, which notifies you by email when new issues are published online.

Open AccessArticles marked with this Open Access icon are freely available and openly accessible to all without any restriction except the ones stated in their respective CC licenses.
We also offer which provide timely updates of tables of contents, newly published articles and calls for papers.

European J. of Industrial Engineering (16 papers in press)

Regular Issues

  • The impact of online sales in centralized and decentralized dual-channel supply chains   Order a copy of this article
    by Subrata Saha 
    Abstract: This paper studies a supply chain structure featuring two different types of distribution channels through which manufacturers sell products. The centralised and decentralised distribution channels considered in this study are affected by online sales outside the structured channels. In the centralised distribution channel, two retail stores located in geographically distinct markets are operated by a single owner. In the decentralised distribution channel, two retailers independently operate two retail stores. In the non-cooperative scenario, the manufacturer always prefers the decentralised distribution channel irrespective of whether an online channel is used. To achieve channel coordination, a revenue-sharing contract is applied, but it can be used to coordinate only the decentralised distribution system. Therefore, a modified revenue-sharing contract is proposed to coordinate the centralised distribution system. The analytical study reveals that without coordination among the channel members, the manufacturer always earns maximum profit in decentralised distribution systems. However, if the supply chain is coordinated, then the manufacturer receives more benefits from using the centralised distribution systems under certain conditions. Propositions are presented to describe the characteristics of distribution structures, and to provide meaningful management guidelines for coordinating them. Extensive numerical investigations are also presented.
    Keywords: Supply chain management; Dual-channel supply chain; Revenue sharing contract; Pricing strategy; Stackelberg.
    DOI: 10.1504/EJIE.2018.10011153
     
  • A coordinated production planning model with capacity expansion for supply chain networks   Order a copy of this article
    by Ming-Hua Lin, Jung-Fa Tsai, Pei-Chun Wang, Yu-Ting Ho 
    Abstract: Developing a flexible supply chain is important for enterprises to face market volatility and diversity. In order to satisfy order requirements under demand uncertainty, this study constructs a coordinated production planning model of supply chain networks considering production capacity expansion. Besides, the proposed model involves batch production that is commonly used in many companies. The constructed model is then linearized as a mixed-integer linear programming problem to guarantee global optimality. The solution of the reformulated model determines the optimal production, transportation and inventory levels as well as the optimal batch production operations and capacity expansion strategy. Several numerical experiments are conducted to demonstrate the effectiveness of the proposed method and the impacts of production capacity expansion on the operations of the supply chain.
    Keywords: supply chain management; coordinated production planning model; demand uncertainty; batch production; flexible production capacity; linear transformation; deterministic optimization.

  • A green vehicle routing problem with time windows considering the heterogeneous fleet of vehicles: Two metaheuristic algorithms   Order a copy of this article
    by Neda Rezaei, Sadoullah Ebrahimnejad, Amirhossein Moosavi, Adel Nikfarjam 
    Abstract: In this paper, the green vehicle routing problem with time windows constraint is studied in the presence of a heterogeneous fleet of vehicles and filling stations. In addition, the number of vehicles and their fuel tank capacity are both limited. The main contribution of this study is the simultaneous consideration of these features, which makes the problem more practical. For this purpose, a mixed integer linear programming model that minimizes the transportation costs and 2 (or carbon dioxide) emissions, is proposed. Furthermore, a genetic algorithm and a population-based simulated annealing are developed to find high-quality solutions for large-scale instances. To validate the proposed model and algorithms, 28 instances are generated using a benchmark database. The computational results demonstrate that both algorithms provide efficient solutions regarding the objective function value and CPU time. Finally, a comprehensive sensitivity analysis is carried out to show the importance of features mentioned above.
    Keywords: Green Vehicle Routing Problem; Time Windows; Heterogenous Fleet of Vehicles; Filling Station; Genetic Algorithm; Simulated Annealing.

  • A novel hierarchical approach for a heterogeneous 3D pallet loading problem subject to factual loading and delivery constraints
    by Sena Kır, Harun Resit Yazgan 
    Abstract: This paper presents a hierarchical approach, which consists of a two-stage genetic algorithm and a mixed integer linear programming, for a heterogeneous three-dimensional pallet loading problem in consideration of the rotation, the relative positioning, the load-bearing strength, and the fragility constraints. Stage # 1 of the proposed two-stage genetic algorithm provides to reduce the number of items to be packed by combining similar items based on a stack-building approach. And, stage # 2 provides to estimate the number of required free pallets. After that, the proposed mixed integer linear programming solves the problem considering the findings of the proposed two-stage genetic algorithm. The proposed hierarchical approach was tested on well-known instances leading to favourable results and compared with a decent solution approach. In addition, a case study was presented.
    Keywords: logistics; 3D pallet loading problem; MILP; genetic algorithm; intelligent dynamic crossover.

  • A dominance-based heuristic to minimize completion time variance in a single machine system   Order a copy of this article
    by H.M. Soroush, Fatmah Almathkour 
    Abstract: This paper addresses the problem of minimizing the variance of job completion times in a deterministic single-machine scheduling system. Minimizing completion time variance is an appropriate objective in scheduling environments where service uniformity is essential. Due to the NP-hard nature of the problem, various heuristics have been presented to obtain a near-optimal solution. In this paper, we introduce a new heuristic based on some powerful precedence (dominance) relation structures, including the concepts of permanent and temporary precedence (dominance) relationships, to determine the positions of adjacent and non-adjacent jobs in a sequence. Our computational experiments demonstrate that the proposed heuristic significantly outperforms the existing ones in deriving the optimal or near-optimal solutions for three well-known sets of benchmark problems and some large randomly generated instances.
    Keywords: Scheduling; single machine; completion time variance; heuristic; precedence; dominance.

  • Humanitarian supply chain network design using data envelopment analysis and multi-objective programming models
    by Jae-Dong Hong 
    Abstract: Emergency events such as natural disasters or terrorist attacks seem to occur anywhere and tend to increase. This paper studies a humanitarian supply chain network (HTSCN) design problem in a pre-disaster scenario, which consists of finding the optimal emergency response facility (ERF) locations and allocation scheme of humanitarian supplies through ERFs, where all ERFs are under the risk of disruptions. Naturally, this type of design problem should deal with multiple goals. An innovative two-step framework of designing efficient HTSCN by combining multi-objective programming (MOP) models with Data Envelopment Analysis (DEA) is proposed. A case study using the historical data on the disasters in South Carolina, USA, is presented to illustrate the effectiveness and efficiency of the proposed combining framework. The case study demonstrates that the proposed procedure would help practitioners and researchers generate a finer evaluation of efficiency and would provide a benchmarking methodology for designing HTSCN system.
    Keywords: humanitarian supply chain network; emergency response facility; data envelopment analysis; multi-objective programming approach.

  • Modelling and Optimizing the Multi-item Stochastic Joint Replenishment Problem with Uncertain Lead-time and Controllable Major Ordering Cost
    by Xue-Yi Ai 
    Abstract: In this paper, we extend the existing stochastic joint replenishment model to a more realistic condition by considering uncertainties in lead-time and effective investment to reduce the major ordering cost. The aim is to determine the optimal strict cyclic replenishment policy and the optimal major ordering cost simultaneously to minimize the total cost. The objective cost function is approximated by expressing one element of the cost function as a Taylor series expansion. A bounds-based heuristic algorithm is then developed to solve the proposed model. The performance of the algorithm and the quality of the approximation are examined by computational experiments. The results of the models without considering uncertainty and ordering cost reduction are presented to illustrate the effectiveness of the proposed model. Experimentation and analysis of results demonstrate that the standard deviation of lead-time has a significant effect on the system.
    Keywords: joint replenishment problem; stochastic demand; uncertain lead-time; inventory; optimization; major ordering cost reduction; heuristics.

  • Investigating the performance improvement by conversion of assembly line configuration to a pure cell system in manufacturing industry   Order a copy of this article
    by T... VenkataDeepthi, K. Ramakotaiah, Vijaya Kumar Manupati, Chaitanya Gangal 
    Abstract: Seru production systems implement reconfiguration of traditional assembly lines to a flexible cell system that aim at reducing the required workforce while at the same time augmenting the productivity manifold. For evaluating the overall performance improvement, cell formatting and assigning workers to serus takes form of a complicated decision problem. In this paper, with the objective of reducing the total cost for training the worker, minimizing the processing time and the total throughput time, mathematical insights on the solution space of a multi-objective line-cell conversion model are identified, in turn proving it to be an NP-hard model. By applying the proposed heuristic algorithm on several numerical simulations, a Pareto-optimal solution of this multi-objective model is obtained. With experimental results and comparative studies, the proposed approach proves its effectiveness that may lead to further improvement in seru production systems competitive advantage to cope with fluctuating market demands by enhancing the flexibility as well as the efficiency of the system.
    Keywords: Seru; manufacturing systems; production systems; flexibility; reconfiguration; cellular manufacturing.

  • A new right-skewed loss function in process risk assessment   Order a copy of this article
    by Onur Köksoy, Pelin Ergen, Melis Zeybek 
    Abstract: Due to globalization, competitive companies realize that providing a more reliable, predictable, and robust product/process is a prerequisite for satisfying their customers and running a successful operation. Many quality improvement techniques focus on reducing process variation in line with the loss to society concept. The widespread use of loss functions in industrial applications has increased their popularity with different loss-handling features. Developments relating to the inverted probability density functions (pdfs) have allowed the application of particular loss functions in a wide range. This paper presents the inverted Wald loss function as a new member of the inverted probability loss family. The important features of the proposed right-skewed loss function are discussed, and the risk functions associated with some process distributions of interest are obtained. Moreover, the proposed loss function and its performance are illustrated on the basis of a comparative study and an industrial example, including the monitoring of loss.
    Keywords: Asymmetric quality loss functions; inverted Wald loss function; risk function; inverted probability loss functions; Wald distribution.

  • Economic-statistical design of EWMA-semicircle charts under the Taguchi loss function   Order a copy of this article
    by Shin-Li Lu 
    Abstract: A single exponentially weighted moving average (EWMA) chart is effectively used to monitor the process mean and/or variance simultaneously. An EWMA-semicircle (EWMA-SC) chart designed from the economic-statistical perspective is proposed, which incorporates Taguchis quadratic loss function into Lorenzen and Vances cost model. Moreover, economic-statistical performance and the effect on process capability index are compared to those with sum of square EWMA (SS-EWMA) and maximum EWMA (MaxEWMA) charts. The optimal decision variables namely, sample size n, sampling interval time h, control limit width L, and smoothing constant - are obtained by minimizing the expected cost function. Via simulations, the EWMA-SC chart is found to incur the smallest expected cost when a process mean and variance simultaneously shift. However, the MaxEWMA chart incurs the lowest cost of defective products when a process mean shifts on its own.
    Keywords: EWMA charts; Economic-statistical design; Cost model; Quadratic loss function.

  • Bi-objective scheduling on two dedicated processors   Order a copy of this article
    by Adel Kacem, Adel Dammak 
    Abstract: In this work, we study a bi-objective scheduling problem on two dedicated processors. The aim is to minimize the makespan and the total tardiness. Our contribution includes lower bounds for each studied criterion and a genetic algorithm adapted for the multi-criteria context. The lower bounds allows us to evaluate the quality of feasible solutions and the genetic algorithm incorporates the optimization part.We implemented our approach by considering the agregative, NSGA-II and the Pareto scenarios on a large set of instances. The obtained results show the effectiveness of the proposed algorithms.
    Keywords: scheduling; total of tardiness; tasks; makespan; dedicated processors; genetic algorithms; lower bound; bi-objective; Pareto front.

  • QoS of cloud prognostic system Application to aircraft engines fleet
    by Zohra Bouzidi, Labib Sadek Terrissaa, Noureddine Zerhounib, Soheyb Ayada 
    Abstract: Recently, Prognostics and Health Management (PHM) solutions are increasingly implemented in order to complete maintenance activities. The prognostic process in industrial maintenance is the main step to predict failures before they occur by determining the Remaining Useful Life (RUL) of the equipment. However, it also poses challenges such as reliability, availability, infrastructure and physics servers. To address these challenges, this paper investigates a cloud-based prognostic system of an aircraft engine based on artificial intelligence methods. We design and implement an architecture that defines an approach that is Prognostic as a Service (Prognostic aaS) using a data-driven approach. This approach will provide a suitable and efficient PHM solution as a service via internet, on the demand of a client, in accordance with a Service Level Agreement (SLA) contract drawn up in advance to ensure a better quality of service and pay this service per use (pay as you go). We esti-mated the RUL of aircraft engines fleet by implementing three techniques. Next, we studied the performance of this system; the efficient method was concluded. In addition, we discussed the quality of service (QoS) for the cloud prognostic application according to the factors of quality.
    Keywords: Prognostics and Health Management (PHM); Remaining Useful Life (RUL); Prognostic as a Service; Cloud Computing; Artificial Intelligence; Measure Performance; Quality of Service (QoS).

  • Performance analysis and optimisation of new strategies for the setup of a multihead weighing process
    by J. Carlos García-Díaz, Alexander Pulido-Rojano 
    Abstract: This paper highlights the benefits of multihead weighing, a packaging process based on the sum of weights of several individual hoppers wherein total weight of the packed product must be close to a specified target weight while complying with applicable regulations. The paper details into performance analysis and optimisation of new strategies for setting up the process to achieve an optimal configuration of the machine. Three strategies, designed to optimise the packaging process, are analysed and compared in terms of supplying products to the hoppers. A factorial design of the experimental model is exploited to predict the measures of performance as a function of a variety of control settings. Results of the numerical experiments are used to analyse the sources of variability and to identify the optimum operating conditions for the multihead weigher. Therefore, the findings of this paper will benefit both manufacturer and users of the multihead weigher machine.
    Keywords: Packing; Multihead weighing process; Variability reduction; Six-Sigma process; Optimal operating conditions.

  • A Bi-Objective Integrated Model for the Uncertain Blood Network Design with Raising Products Quality   Order a copy of this article
    by Mohammad Reza Ghatreh Samani, Seyyed-Mahdi Hosseini-Motlagh, Seyed Nader Shetab Boushehri, Maryam Izadidoost Sheshkol 
    Abstract: Blood transfusion is a multi-step process with risks in each process from selecting donors to transfusing the patient. Meanwhile, the quality plays an essential part throughout the blood supply chain. In this regard, this study proposes a bi-objective model for an integrated blood supply chain network design. The first objective function tries to minimise the total network cost, whereas the second objective seeks to maximise the quality factor. Due to the epistemic uncertainty of critical parameters, a fuzzy method, as well as some robust approaches, are tailored. The applicability and performance of these proposed methods and their validation are studied in a real case of Tehran's blood network. The results illustrate the preference of realistic robust approach to the other methods due to reduction in cost as well as preserving the quality. Finally, the paper comes to an end with the sensitivity analysis, conclusion and some suggestions for future directions. [Received: 22 June 2018; Accepted: 9 January 2019]
    Keywords: Blood supply chain; Healthcare management; Multi-objective optimization; Robust programming; Raising quality.
    DOI: 10.1504/EJIE.2019.10021573
     
  • An inventory model with variable demand incorporating unfaithfulness of customers under two level trade credit   Order a copy of this article
    by Prasenjit Pramanik, Manas Kumar Maiti 
    Abstract: In this research work, an inventory model has been developed under two-level trade credit policy with unfaithful customers. A percentage of the total customers are treated as unfaithful customers. Demand is influenced by customers' credit period, credit amount and selling price. Due to the vagueness of some parameters, the proposed model is formulated in both the crisp and fuzzy environments. The main purpose of this research work is to determine the optimal replenishment policy so that the total profit of the retailer is maximised. The existence of a solution to the problem is discussed theoretically and then some numerical experiments are undertaken. To find the marketing decision of a generalised model (when the number of variables increases) and for the fuzzy objectives, a soft computing technique is used. Some sensitivity analyses are performed to provide some managerial insights. Finally a conclusion is drawn and some future research directions are proposed. [Received: 14 November 2017; Accepted: 2 January 2019]
    Keywords: Inventory; Trade Credit; Unfaithful Customers; Particle Swarm Optimization; Variable Demand.
    DOI: 10.1504/EJIE.2019.10021934
     
  • Prioritization and Assessment of leagile manufacturing enablers using Interpretive Structural Modeling (ISM) approach   Order a copy of this article
    by NAVEEN VIRMANI, Vikram Sharma 
    Abstract: Nowadays, market is very competitive. Industries are required to make changes in the production system quickly so as to meet the fluctuating needs of customers. Also, the components or product made should be of good quality at reasonable cost. To accomplish this task, industries are required to have state of art facilities like flexible manufacturing system (FMS), robotics, programmable logic controller (PLC), electric discharge machining (EDM), etc. In this paper, leagile system, i.e., combination of lean and agile system has been discussed. The concept of leagile manufacturing tries to reduce the cost of the product to minimum possible level and reduces the cycle time so that the finished products can be delivered to the customer as quickly as possible. In this paper, leagile enablers have been found out through literature review and in discussion with experts. Interpretive structural modelling technique (ISM) has been applied to find the relationship between these enablers and for constructing digraph. [Received 28 March 2018; Accepted 1 January 2019]
    Keywords: Agile manufacturing; Lean manufacturing; Leagile manufacturing.
    DOI: 10.1504/EJIE.2019.10021944