A comprehensive review of microstructure evolution during friction stir welding of aluminium to copper
by Tanmoy Medhi; Barnik Saha Roy; Subhash Chandra Saha
International Journal of Materials and Product Technology (IJMPT), Vol. 57, No. 1/2/3, 2018

Abstract: The present review paper focuses on the various researches done in joining of aluminium and copper by friction stir welding (FSW). Being a solid state process, FSW has proven to efficiently join aluminium and copper which is extensively used in power generation, electrical and electronic industry. However, it is a challenge to achieve a good quality welded joint of aluminium and copper due to the difference in properties of both the materials. The present review paper comprehensively reports the study of microstructure and its evolution during the process. Also, an assessment of the formation of different intermetallic compounds (IMCs) during the process and the effect of various process parameters like rotational speed, tool traverse speed, the arrangement of base materials, offset and tool geometry on the IMCs and microstructure evolution is given.

Online publication date: Tue, 03-Jul-2018

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Materials and Product Technology (IJMPT):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com