Methods for power minimisation in modern VLSI circuits
by Bojan Jovanović; Milun Jevtić
International Journal of Reasoning-based Intelligent Systems (IJRIS), Vol. 4, No. 1/2, 2012

Abstract: The continued scaling of the CMOS technology has led us into the deep submicron regimes where design is not limited by the functionality on a chip but is constrained with its power consumption. In this paper, we present some widely used techniques for static and dynamic power minimisation in modern VLSI circuits. These techniques are applicable on the different stages of the system design, starting from technology level where designer is allowed to change technology parameters (transistor sizes, supply and threshold voltages) up to the top level which deals with the design's architectural variations. Along with the overview of power minimisation techniques, as an example, the circuit of binary divider was introduced and implemented in various families FPGAs to demonstrate technological as well as Placement and Routing (PAR) influence on total power consumption.

Online publication date: Tue, 10-Apr-2012

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Reasoning-based Intelligent Systems (IJRIS):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com