Forthcoming articles

 


International Journal of Image Mining

 

These articles have been peer-reviewed and accepted for publication in IJIM, but are pending final changes, are not yet published and may not appear here in their final order of publication until they are assigned to issues. Therefore, the content conforms to our standards but the presentation (e.g. typesetting and proof-reading) is not necessarily up to the Inderscience standard. Additionally, titles, authors, abstracts and keywords may change before publication. Articles will not be published until the final proofs are validated by their authors.

 

Forthcoming articles must be purchased for the purposes of research, teaching and private study only. These articles can be cited using the expression "in press". For example: Smith, J. (in press). Article Title. Journal Title.

 

Articles marked with this shopping trolley icon are available for purchase - click on the icon to send an email request to purchase.

 

Articles marked with this Open Access icon are freely available and openly accessible to all without any restriction except the ones stated in their respective CC licenses.

 

Register for our alerting service, which notifies you by email when new issues of IJIM are published online.

 

We also offer RSS feeds which provide timely updates of tables of contents, newly published articles and calls for papers.

 

International Journal of Image Mining (1 paper in press)

 

Regular Issues

 

  • Microscopic Image Analysis for Herbal Plant Classification   Order a copy of this article
    by Bhupendra Fataniya, Tanish Zaveri 
    Abstract: An identification of herbal plants from its powder form is a challenging task. In this paper, a new method for identification and classification of herbal plants liquorice, rhubarb and dhatura using the microscopic image is proposed. This paper evaluates the effectiveness of the shape and texture based features with a different classifier for herbal plants classification. Three shape and five texture features are computed for each object. The effectiveness of the individual shape and texture based features set and their combinations are investigated using a support vector machine, K- nearest neighbour and ensemble classifier. The highest 94.9% classification accuracy was achieved by combining all shape features using the bagged tree ensemble classifier. While using a combination of texture-based features almost 99.8% classification accuracy is obtained using fine K- nearest neighbour and cubic-support vector machine classifier. Further, by combining shape and texture based features classification efficiency achieved is 99.3% with quadratic-support vector machine. From the analysis of simulation results, it is found that texture based features are more effective to classify a microscopic image of herbal plants.
    Keywords: Shape Feature; Texture Feature; Object Detection; herbal plant; Microscopic image.