Forthcoming articles

 


International Journal of Abrasive Technology

 

These articles have been peer-reviewed and accepted for publication in IJAT, but are pending final changes, are not yet published and may not appear here in their final order of publication until they are assigned to issues. Therefore, the content conforms to our standards but the presentation (e.g. typesetting and proof-reading) is not necessarily up to the Inderscience standard. Additionally, titles, authors, abstracts and keywords may change before publication. Articles will not be published until the final proofs are validated by their authors.

 

Forthcoming articles must be purchased for the purposes of research, teaching and private study only. These articles can be cited using the expression "in press". For example: Smith, J. (in press). Article Title. Journal Title.

 

Articles marked with this shopping trolley icon are available for purchase - click on the icon to send an email request to purchase.

 

Articles marked with this Open Access icon are freely available and openly accessible to all without any restriction except the ones stated in their respective CC licenses.

 

Register for our alerting service, which notifies you by email when new issues of IJAT are published online.

 

We also offer RSS feeds which provide timely updates of tables of contents, newly published articles and calls for papers.

 

International Journal of Abrasive Technology (8 papers in press)

 

Regular Issues

 

  • Study on the Surface Micro-topography in Pre-stressed Dry Grinding Proces   Order a copy of this article
    by Yansheng Deng, Xiaoliang Shi, Shichao Xiu, Minghe Liu 
    Abstract: To study the surface micro-topography in pre-stressed dry grinding process, the single grain cutting simulations were carried out in DEFORM-3D, besides, dry grinding experiments were conducted. The residual stress, groove depth and pile-up height were analyzed in the simulations. The surface roughness was measured and micro-surface topography was observed by SEM in the experiments. The results indicated that the application of pre-stress is beneficial to generate more compressive stress, which is beneficial to restrain the generation of surface micro-cracks. Pre-stress can reduce the pile-up height. When pre-stress is within a lower range, the groove depth decreases with pre-stress increasing, however, once pre-stress overcomes a certain value, surface fold appears and surface roughness increases instead. The influence rules of the cutting depth and feeding speed on surface micro-topography in pre-stressed dry grinding process are consistent with them in the traditional grinding process.
    Keywords: pre-stressed dry grinding; residual stress; groove depth; pile-up height; surface micro-topography; surface roughness.

  • Wheel lift-off in creep-feed grinding: thermal damage, power surge, chip thickness and optimization   Order a copy of this article
    by Radovan Drazumeric, Jeffrey Badger, Peter Krajnik 
    Abstract: An investigation is made into the phenomenon of early lift-off in creep-feed grinding, where the wheel lifts away from the workpiece before reaching the end of cut. In single-pass operations, early lift-off can result in thermal damage. In multi-pass operations, there is a surge in material-removal rate just before lift-off, which can result in thermal damage and excess wheel wear. This study examines the current inadequate methods of dealing with lift-off. It then develops a geometric and kinematic model for analyzing the lift-off phenomenon. It finally proposes a thermal-model-based optimization method for achieving a constant maximum surface temperature, resulting in shorter cycle times and less risk of thermal damage. The power-surge model is validated experimentally in diamond grinding of tungsten-carbide rotary tools.
    Keywords: Grinding; Tooling; Thermal damage; Optimization.

  • Effects of grinding process parameters on the surface topography of PCBN cutting inserts   Order a copy of this article
    by Bahman Azarhoushang, Thomas Stehle, Heike Kitzig-Frank 
    Abstract: PCBN (polycrystalline cubic boron nitride) as cutting tool material is a proper choice for machining difficult-to-cut materials, such as hardened steels, superalloys and cast irons. This is mainly due to its high hardness, high chemical stability and toughness. Grinding with a diamond wheel is the most commonly used process to achieve dimensional accuracy and the required surface finish of PCBN tools. The surface quality of PCBN tools and hence their machining performance strongly depend on the grinding parameters. The induced cutting forces, temperature, loading and wear of the grinding wheel influence the quality of the ground PCBN surface. The effects of cutting parameters, i.e. cutting speed, axial feed speed and oversize, on the cutting forces, surface roughness and loading of the grinding wheel during plunge face grinding of PCBN inserts are studied in this work. The grinding process was divided into two stages, namely roughing and finishing. It was found that increasing the cutting speed from 20 m/s to 40 m/s can decrease the cutting forces and surface roughness up to 20% and 30% respectively. Additionally, the amount of oversize in roughing and the roughing parameters have a significant influence on the induced cutting forces in the finishing stage and the surface quality of the ground PCBN inserts.
    Keywords: Face Grinding; PCBN Inserts; Cutting Speed; Roughing; Finishing.

  • The Effects of Temperature Curves on the Diamond/NiCr Interfacial Properties in Highfrequency Induction Brazing   Order a copy of this article
    by Guoqin Huang, Meiqin Zhang, Hua Guo, Xipeng Xu 
    Abstract: The present study alters the temperature characteristics during high-frequency induction brazing of diamond grits and investigates their effects on the properties of the diamond/brazing alloy interface. The high-frequency induction brazing was conducted in a vacuum using NiCr as active filler alloy. An active temperature range was identified for the brazing of high-quality diamond tools. This temperature range, coupled with long heating time, favours the wetting of filler alloy to diamonds, and the chemical reactions and element diffusion at the diamond/alloy interface, but reduces the static compressive strength of the diamonds. If the temperature is slowly raised, the protrusion height and location of brazed diamonds can be more precisely controlled. Brazed diamonds with 3050% protrusion are optimal for cutting.
    Keywords: Diamond; Ni–Cr alloy; High-frequency induction brazing; Interface.

  • An experimental study of the particle velocities in abrasive waterjets   Order a copy of this article
    by Kunlapat Thongkaew, Jun Wang 
    Abstract: Abstract: An experimental study using particle image velocimetry (PIV) and laser induced fluorescence (LIF) techniques is presented to examine the particle flow characteristics inside the high velocity abrasive waterjet (AWJ) and assess the capability of this measurement technique. Although the particle velocity is found to increase with an increase in water pressure, the velocity of particles on the jet centreline decreases while that at the jet edge increases as the jet flows downstream within 40 mm distance from the nozzle exit considered in this study. It is also shown that particles rotate while moving downstream from the nozzle exit. While these particle flow characteristics may be anticipated from theoretical understanding, it confirms that the capability of this technique is not only able to measure the particle velocities, but also observe the particle trajectory in high velocity flows. The measured particle velocity data are then used to assess the applicability of a previously developed particle velocity model for low water pressures. It is found that the model can equally give adequate predictions of particles velocities in AWJ for relatively low water pressures of within 20 MPa.
    Keywords: Keywords: Abrasive waterjet; Particle image velocimetry; Laser induced fluorescence; Particle velocity; Particle distribution.

  • Modeling of the micro-grinding process considering the grinding tool topography   Order a copy of this article
    by Mohammadali Kadivar, Ali Zahedi, Bahman Azarhoushang, Peter Krajnik 
    Abstract: The micro topography of the grinding tool has a considerable influence on the cutting forces and temperature as well as the tool wear. This paper addresses an analytical modeling of the micro-grinding process based on the real tool topography and kinematic modeling of the cutting-edge-workpiece interactions. An approximate shape of the abrasive grains and their distribution is obtained from the confocal images, which are taken from the tool surface determining the grain height protrusion and the probability density function of the grains. To determine the grinding forces, a transient kinematic approach is developed. In this method, the individual grit interaction with the workpiece is extended to the whole cutting zone in the peripheral flank grinding operation. Hence a predictive model of cutting forces and surface roughness in micro grinding of titanium grade 5 is developed. Finally, the simulated forces and surface roughness are validated by the experimental results.
    Keywords: Single-grain interaction; micro grinding; Diamond grinding pin; grinding pin topology.

  • Effect of small quantity lubrication on grindability of hardened AISI 4340 steel   Order a copy of this article
    by Sirsendu Mahata, Joydip Roy, Ankesh Samanta, Bijoy Mandal, Santanu Das 
    Abstract: The process of grinding is normally associated with generation of considerable amount of heat. To reduce thermal damages, grinding zone is often flooded with liquid coolant, most of which is wasted and may cause severe environmental pollution. In the present work, grindability of hardened AISI 4340 steel is assessed at various infeeds, using an eco-friendly vegetable oil applied by small quantity lubrication (SQL) technique, so as to reduce the quantity of coolant. At the same infeed, grinding is also performed by applying a uniform layer of semi-solid lubricant (grease) on the work surface. Comparison is made between the two methods in terms of force, surface roughness, specific grinding energy and observed chip forms. Results prove that SQL technique using vegetable oil is better than grease as a lubricant in terms of force requirement, while surface quality shows improvement with grease layer lapped on the work surface than with SQL technique.
    Keywords: grinding; grindability; cooling; lubrication; SQL; roughness; force; eco-friendly manufacturing.

  • Development of cBN electroplated end-mill combined cutting and grinding for precision machining of CFRP   Order a copy of this article
    by Tatsuya Furuki, Yugo Kabaya, Toshiki Hirogaki, Eiichi Aoyama, Kiyofumi Inaba, Kazuna Fujiwara 
    Abstract: Carbon-fibre reinforced plastic (CFRP) has been applied to various fields because of its excellent mechanical properties. Generally, after fabrication with moulding, CFRP requires additional machining, such as cutting or grinding. As the cutting tool for CFRP, a diamond-coated end-mill with high wear resistance has been developed. However, burr or uncut fibre is easily formed. Meanwhile, in the case when a grinding wheel is used, the machining efficiency is low even though there are sharp edges with burr or uncut fibres. Therefore, there is a need for the development of a versatile tool that can achieve precision machining of CFRP with high efficiency. This study develops a cBN electroplated end-mill that is a combination of a cutting tool and a grinding wheel. This report shows that the developed tool is able to perform high-efficiency cutting like the diamond coated end-mill, and high-precision grinding like a diamond wheel.
    Keywords: CFRP; cBN; electroplated end-milling; grinding; machining centre.