A Pareto-based approach to optimise aggregate production planning problem considering reliable supplier selection
by Arash Nobari; AmirSaman Khierkhah; Vahid Hajipour
International Journal of Services and Operations Management (IJSOM), Vol. 29, No. 1, 2018

Abstract: This work presents a multi objective model for a multi-product, multi-site aggregate production planning (APP) problem in a supply chain. The objectives are: 1) minimising the total cost of supply chain including inventory costs, manufacturing costs, work force costs, hiring, and firing costs; 2) maximising the reliability of the supply chain's production plan with regard to the selection of reliable facilities which have probabilistic lead times. Based on the complexity of the proposed model, two Pareto-based multi-objective metaheuristic algorithms including multi-objective imperialist competitive algorithm (MOICA) and non-dominated sorting genetic algorithm (NSGA-II) were applied to solve the proposed model. In order to evaluate the results, several numerical examples were generated, by which the algorithms were analysed statistically and graphically.

Online publication date: Mon, 11-Dec-2017

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Services and Operations Management (IJSOM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com