Sign language recognition in complex background scene based on adaptive skin colour modelling and support vector machine
by Tse-Yu Pan; Li-Yun Lo; Chung-Wei Yeh; Jhe-Wei Li; Hou-Tim Liu; Min-Chun Hu
International Journal of Big Data Intelligence (IJBDI), Vol. 5, No. 1/2, 2018

Abstract: With the advances of wearable cameras, the user can record the first-person view videos for gesture recognition or even sign language recognition to help the deaf or hard of hearing people communicate with others. In this paper, we propose a purely vision-based sign language recognition system which can be used in complex background scene. We design an adaptive skin colour modelling method for hand segmentation so that the hand contour can be derived more accurately even when different users use our system in various light conditions. Four kinds of feature descriptors are integrated to describe the contours and the salient points of hand gestures, and support vector machine (SVM) is applied to classify hand gestures. Our recognition method is evaluated by two datasets: 1) the CSL dataset collected by ourselves in which images were captured in three different environments including complex background; 2) the public ASL dataset, in which images of the same gesture were captured in different lighting conditions. The proposed recognition method achieves acceptable accuracy rates of 100.0% and 94.0% for the CSL and ASL datasets, respectively.

Online publication date: Fri, 01-Dec-2017

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Big Data Intelligence (IJBDI):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email