Advanced structure methodologies for next-generation ground vehicles. Part 1: Basic theories
by C. Pierre, N. Vlahopoulos, Z.D. Ma, M.P. Castanier, S.-Y. Lee, A. Wang, K.K. Choi, N.H. Kim, J. Dong
International Journal of Heavy Vehicle Systems (IJHVS), Vol. 11, No. 3/4, 2004

Abstract: One of the major objectives of the Automotive Research Center (a US Army TACOM Center of Excellence for the modelling and simulation of ground vehicles at the University of Michigan) is to develop new methodologies for advanced structures and materials for next-generation ground vehicles. Several major developments in this area are detailed in this paper. First, an advanced topology optimisation technique is presented, which provides a tool for laying out new, conceptually advanced designs for vehicle structures, or substructures, to achieve the lower weight and higher performance requirements for next-generation ground vehicles. Second, a ''sizing'' design optimisation process is presented for detailed design changes in order to improve the vibro-acoustic response of a complex vehicle structure. This process incorporates efficient analysis and sensitivity analysis capabilities for vibro-acoustic systems. In addition, a component-based technique is presented for generating reduced-order models of a vehicle structure in order to lower the computational costs of vibration analysis. This technique is also extended to analysing vibration transmission in a complex vehicle structural system to determine the power flow among components and the effect of parameter uncertainties. Finally, an energy boundary element analysis method is presented for efficient and accurate high-frequency noise analysis, which extends the capability for predicting the acoustic field around the vehicle due to various sources.

Online publication date: Mon, 04-Oct-2004

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Heavy Vehicle Systems (IJHVS):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email