Parallelisable variants of Camellia and SMS4 block cipher: p-Camellia and p-SMS4 Online publication date: Thu, 04-Sep-2014
by Huihui Yap; Khoongming Khoo; Axel Poschmann
International Journal of Applied Cryptography (IJACT), Vol. 3, No. 1, 2013
Abstract: We propose two parallelisable variants of Camellia and SMS4 block ciphers based on the n-cell GF-NLFSR. The n-cell generalised Feistel-non-linear feedback shift register (GF-NLFSR) structure (Choy et al., 2009a) is a generalised unbalanced Feistel network that can be considered as a generalisation of the outer function FO of the KASUMI block cipher. An advantage of this cipher over other n-cell generalised Feistel networks, e.g., SMS4 (Diffe and Ledin, 2008) and Camellia (Aokiet al., 2001), is that it is parallelisable for up to n rounds. In hardware implementations, the benefits translate to speeding up encryption by up to n times while consuming similar area and significantly less power. At the same time, n-cell GF-NLFSR structures offer similar proofs of security against differential cryptanalysis as conventional n-cell Feistel structures. In this paper, we prove security against differential, linear and boomerang attacks. We also show that the selected number of rounds are conservative enough to provide high security margin against other known attacks such as integral, impossible differential, higher order differential, interpolation, slide, XSL and related-key differential attacks.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Applied Cryptography (IJACT):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com