Robust control of nonlinear systems using neural network based HJB solution
by Dipak M. Adhyaru, I.N. Kar, Madan Gopal
International Journal of Automation and Control (IJAAC), Vol. 3, No. 2/3, 2009

Abstract: In this paper, a Hamilton-Jacobi-Bellman (HJB) equation based optimal control algorithm for robust controller design is proposed for a nonlinear system. Utilising the Lyapunov direct method, the controller is shown to be optimal with respect to a cost functional, which includes penalty on the control effort, the maximum bound on system uncertainty and cross-coupling between system state and control. The controllers are continuous and require the knowledge of the upper bound of system uncertainty. In the present algorithm, neural network is used to approximate value function to find approximate solution of HJB equation using least squares method. Proposed algorithm has been applied on a nonlinear system with matched uncertainties. It is also applied to the system having uncertainties in input matrix. Results are validated through simulation studies.

Online publication date: Sun, 17-May-2009

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Automation and Control (IJAAC):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com