Title: Robust control of nonlinear systems using neural network based HJB solution

Authors: Dipak M. Adhyaru, I.N. Kar, Madan Gopal

Addresses: Department of Electrical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India. ' Department of Electrical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India. ' Department of Electrical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India

Abstract: In this paper, a Hamilton-Jacobi-Bellman (HJB) equation based optimal control algorithm for robust controller design is proposed for a nonlinear system. Utilising the Lyapunov direct method, the controller is shown to be optimal with respect to a cost functional, which includes penalty on the control effort, the maximum bound on system uncertainty and cross-coupling between system state and control. The controllers are continuous and require the knowledge of the upper bound of system uncertainty. In the present algorithm, neural network is used to approximate value function to find approximate solution of HJB equation using least squares method. Proposed algorithm has been applied on a nonlinear system with matched uncertainties. It is also applied to the system having uncertainties in input matrix. Results are validated through simulation studies.

Keywords: HJB equation; robust control; optimal control; neural networks; matched uncertainties; nonlinear control; controller design.

DOI: 10.1504/IJAAC.2009.025238

International Journal of Automation and Control, 2009 Vol.3 No.2/3, pp.135 - 153

Available online: 17 May 2009 *

Full-text access for editors Access for subscribers Purchase this article Comment on this article