Sintered nanosilver paste for high-temperature power semiconductor device attachment
by Jesus N. Calata, Thomas G. Lei, Guo-Quan Lu
International Journal of Materials and Product Technology (IJMPT), Vol. 34, No. 1/2, 2009

Abstract: Sintered nanosilver is a lead-free die-attach material that could substitute for solder alloys and conductive epoxies for packaging power semiconductor devices, especially for high-temperature applications. While the maximum use temperature of a solder is limited by its melting point, the sintered silver joint can be used above the processing temperature, thus enabling high-performance power devices based on SiC technology to operate at high temperature. It can be fired at temperatures below 300°C without requiring applied pressure to form a dense interconnection with thermal and electrical conductivities superior to those of common high-temperature solder alloys. Die-shear strengths between 25 and 35 MPa can be obtained which compares favourably to the shear strength of solder. Unlike solder, which tends to form large voids during reflow, the sintered silver has a low elastic modulus and a microstructure containing only randomly distributed micrometer-scale pores that eliminates hot spots in the joint.

Online publication date: Sun, 04-Jan-2009

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Materials and Product Technology (IJMPT):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email