Identification of Hammerstein-Wiener time delay model based on approximate least absolute deviation Online publication date: Wed, 05-Apr-2023
by Baochang Xu; Zhichao Rong; Yaxin Wang; Likun Yuan
International Journal of Modelling, Identification and Control (IJMIC), Vol. 42, No. 3, 2023
Abstract: Nonlinearity, time delay and spike noises widely exist in industrial processes. Compared with the linear model, the typical nonlinear Hammerstein-Wiener (H-W) model can describe nonlinear characteristics of industry processes more accurately. In order to overcome the effect of spike noise on the identification results, we propose a stochastic gradient algorithm based on the least absolute deviation in this paper. To solve the non-differentiable problem of the least absolute deviation, an approximate least absolute deviation objective function is established by introducing a deterministic differentiable function to replace the absolute residual. Experiments show the proposed algorithm can suppress the influence of the spike noise on the identification results, and has high identification accuracy and strong robustness.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Modelling, Identification and Control (IJMIC):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com