Conjunctive use of flow modelling, entropy, and GIS to design the groundwater monitoring network in the complex aquifer system Online publication date: Wed, 21-Dec-2022
by Yashwant B. Katpatal; Chandan Kumar Singh
International Journal of Hydrology Science and Technology (IJHST), Vol. 15, No. 1, 2023
Abstract: The groundwater level monitoring network (GWLMN) provides a basis for management and planning of groundwater resources. The present study aims to assess and redesign the GWLMN for the Wainganga Basin, Central India. The study proposes a three-step method to redesign the GWLMN: 1) to simulate spatiotemporal distribution of groundwater levels (GWLs) using groundwater flow modelling (GWFM); 2) to analyse the uncertainty in GWL for each observation wells (OWs) using entropy theory; 3) to optimise GWLMN using hydrological and anthropogenic parameters. The study suggests that, a minimum of 116 OWs were significant for GWLMN. Incorporation of hydrological and anthropogenic parameters into the GIS environment is found to be important for designing GWLMN. The proposed method is useful for redesigning GWLMN in a complex aquifer system.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Hydrology Science and Technology (IJHST):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com