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Abstract: The groundwater level monitoring network (GWLMN) provides a 
basis for management and planning of groundwater resources. The present 
study aims to assess and redesign the GWLMN for the Wainganga Basin, 
Central India. The study proposes a three-step method to redesign the 
GWLMN: 1) to simulate spatiotemporal distribution of groundwater levels 
(GWLs) using groundwater flow modelling (GWFM); 2) to analyse the 
uncertainty in GWL for each observation wells (OWs) using entropy theory; 
3) to optimise GWLMN using hydrological and anthropogenic parameters. The
study suggests that, a minimum of 116 OWs were significant for GWLMN.
Incorporation of hydrological and anthropogenic parameters into the GIS
environment is found to be important for designing GWLMN. The proposed
method is useful for redesigning GWLMN in a complex aquifer system.
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1 Introduction 

Evaluation of the groundwater resources and understanding of the complex 
hydrogeologic process is essential for planning, designing, and management of 
groundwater resources (Varalakshmi et al., 2014). Groundwater level (GWL) monitoring 
using observation wells (OWs) is one of the essential parts of groundwater management. 
The purpose of a groundwater level monitoring network (GWLMN) is to enhance the 
understanding of the hydrogeologic system through the systematic collection of GWL 
data (Hosseini and Kerachian, 2017). OWs are used for long-term and systematic 
monitoring of groundwater quality and quantity within space and time. Improper spatial 
and temporal distribution of OWs in complex aquifer systems may return 
unrepresentative information about the groundwater resources. In a complex aquifer 
system, arid and semiarid climatic conditions, and increased exploitation of groundwater 
may make the monitoring system highly uncertain (Singh and Katpatal, 2017a). It is not 
feasible to add OWs at every location, but it is essential to know the status of 
groundwater at unmonitored locations. Hence, a redesign of an optimised network of 
GWL is significant for an effective groundwater management. 

In recent studies, various authors have applied different approaches to the design of 
hydrometric networks such as precipitation and GWLMNs (Mishra and Coulibaly, 2009; 
Wang et al., 2017). Some authors state that the geostatistical-based approach is an 
effective method to reduce the interpolation discrepancy of the monitoring network 
(Júnez-Ferreira and Herrera, 2013; Ritzi and Soltanian, 2015; Singh and Katpatal, 
2017b). In addition, statistical and entropy theory-based methods have been extensively 
used in the design of GWLMN (Singh and Katpatal, 2020a). In general, the hydrometric 
monitoring networks have been optimised to achieve a systematic and long-term data 
collection by increasing the accuracy and reducing the uncertainty (Li et al., 2012). 
Mondal and Singh (2012) have employed the discrete-based entropy theory to evaluate 
GWLMN. Hosseini and Kerachian (2017) have considered a different approach with 
entropy theory to redesign the groundwater monitoring network. Also, many authors have 
analysed and studied groundwater flow models for different purposes, such as to predict 
(deterministic) or forecast (probabilistic) the aquifer response under anthropogenic 
changes (Mondal et al., 2011; Katpatal et al., 2014; Varalakshmi et al., 2014), to simulate 
the aquifer system (Ansari et al., 2016), and to generate the hypothetical system to study 
the principles of groundwater flow system (Shigidi and Garcia, 2003). The  
numerical-based groundwater model simulates the complex hydrological process using a 
set of governing equations (Todd and Mays, 1980). The groundwater flow model can 
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provide the solution on the continuous spatial domain. To date, no study has been found 
to optimise the GWLMN using groundwater modelling. 

In the aforementioned studies, the geostatistical-based optimisation method mainly 
focuses on the statistical relationship within hydrometric networks. In addition, entropy 
theory has been used extensively in different hydrological applications (Singh and 
Katpatal, 2020b). However, less consideration has been given to the spatiotemporal 
distribution and hydrological characteristics of the hydrometric network. The complexity 
of the aquifers has a measurable impact on the groundwater availability and movement 
(Kelly et al., 2013). Yet, less attention has been given to redesigning of GWLMN in 
complex aquifer systems. 

To overcome the aforementioned limitations, the present study demonstrates a simple 
and new optimisation technique to redesign the GWLMN in the Wainganga Basin, 
Central India. This study utilises entropy-based theory and groundwater flow model 
(MODFLOW) in a GIS environment to optimise the GWLMN. The advantage of 
applying the groundwater model is that it provides continuous GWL data in the spatial 
and temporal domain, whereas entropy theory analyses only discrete field data. Hence, a 
combination of the groundwater flow model and entropy theory in GIS environment has 
been proposed to redesign the network that incorporates the continuous spatial 
phenomenon, spatial uncertainty and hydrological and anthropogenic factors. This paper 
is organised as follows: the methods used to optimise the GWL monitoring network 
which is described concisely in the materials and methods section, the hypothetically 
assumed network of OWs, the output obtained from the groundwater flow modelling, the 
uncertainty analysis using entropy theory and used to redesign the GWL network given in 
the results and discussion section. The major findings from the study are presented as 
conclusions. 

2 Materials and methods 

In this section, three steps were proposed to redesign the GWLMN in the complex 
aquifer system of the Wainganga Sub-Basin. The first step aims to simulate groundwater 
model of the study area under steady state condition using MODFLOW. The second step 
includes the application of entropy theory to evaluate the uncertainty in each OW with 
the change in season from the year 1999 to 2012. The third step demonstrates the 
application of GIS, groundwater flow model and uncertainty analysis to optimise the 
GWLMN in irrigated regions of the complex aquifer system. The overall methodology 
and the hydrological factors applied in the present study are explained in Figure 1. 

2.1 Study area 

The Wainganga Sub-Basin is located between 20°35′–21°44′N and 78°15′–79°40′E in 
Central India (Figure 2). The altitude of the study area varies between 119 and 527 m 
above mean sea level (amsl). The study area covers 3,320 km2. The average annual 
precipitation in the study area is about 800 to 1,200 mm (Chandan and Yashwant, 2017). 
The study area comprises six complex aquifer systems, namely alluvium, amgaon 
gneissic complex, mica schist, basalt, calc gniess marble, and an unclassified gneissic 
complex (GSI, 2009; Manzar, 2013) (Figure 1 and Table 1). Kanhan is the major river 
flowing through the middle of the study area. Depending upon the source of water 
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supply, the study area is classified as command area (CA) and non-command area 
(NCA). Groundwater is the major source of water supply in the NCA while, surface 
water is a major source of water supply in the CA (CWC and NRSC, 2014). The 
groundwater resource available in the study area is 170–200 MCM/year (Singh and 
Katpatal, 2017b). The existing GWLMN in the region consists of 30 OWs. The 
continuous GWLs measurement in January, March, May and October months was 
recorded from the year 1999 to 2012 (CGWB, 2012, 2014). 

Figure 1 Flow chart showing the overall method (see online version for colours) 

 

Table 1 Aquifer system of the study area 

Sr. no. Aquifer Yield (m3/day) Specific yield (%) 
1 Basalt 13–56 2–3.5 
2 Amgaon Gneissic Complex 10–33 Up to 1.5 
3 Alluvium 70–350 6–10 
4 Unclassified Gneiss Tirodi Gneissic Complex 10–35 Up to 1.5 
5 Calc Gneiss and Marble 18–36 1.5–2 
6 Mica Schist 18–27 1.5–2 
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Figure 2 Location map of the study area representing digital elevation model (DEM), river and 
existing OWs (see online version for colours) 

 

2.2 Groundwater flow modelling 

2.2.1 Conceptual model 
The study area comprises complex aquifer formations. Based on the hydrogeology of the 
study area, a single layer unconfined aquifer was conceptualised with an average 
thickness of 30 m. The details of the complex aquifer system are shown in Table 1. The 
groundwater flow model of the study area was simulated using Groundwater Modelling 
System (GMS) software 7.1. An unconfined, anisotropic and heterogeneous aquifer was 
assumed to model the 2D groundwater flow (steady state) in the Wainganga Sub-Basin 
[equation (1)]. 

0x y
h hK h K h

x x y y
∂ ∂ ∂ ∂   + =   ∂ ∂ ∂ ∂   

 (1) 

Directional components of hydraulic conductivity (m/day), h = head (m). 
A ‘conceptual model approach’ was used in which, raster layers in the map module of 

GMS software were used to prepare a conceptual model of the study area. All the 
necessary input data and parameters such as OWs, river/drainage, top and bottom 
elevation of the aquifer, hydraulic conductivity, recharge, starting head, etc. were created 
as raster layers and defined at the conceptual model level. Subsequently, the 2D grid was 
created and the conceptual model was changed to the grid-based MODFLOW numerical 
model and cell to cell computations were performed. 

2.2.2 Model design 
For the model, a domain of 95.65 km by 75.31 km was considered and discretised into 
625 cells (25 columns and 25 rows) with cell dimension of 3 km by 3.8 km each  
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(Figure 3). The cells outside the boundary of the study area were marked as inactive cells. 
The study area was discretised into 310 active cells and 315 inactive cells. The aquifer 
condition of May 2011 was assumed to be the initial condition for the model calibration. 
The water level data for May (pre-monsoon) 2011 was interpolated using the simple 
kriging method (Davis, 2002) and the resulting interpolated data was exported to GMS 
MODFlOW, as the initial head (input) for groundwater flow simulation. 

2.2.3 Model calibration 
The model was run for the steady flow rate and groundwater contours were created by the 
model. Several trials and error were executed to calibrate the hydraulic conductivity. 
Parameters such as hydraulic conductivity were adjusted, and the model was iteratively 
run until the computed value matched measured output values (field observation) within a 
calibration target. The calibration target value of the water level of ±1 m was defined. 
Initially, a forward model was run to calibrate the model within an acceptable level of 
accuracy. But after running the model for several trials, the set calibration target was not 
achieved by the forward model. Subsequently, an inverse modelling (zonal approach) 
was performed to calibrate the model. In this approach, the model was initialised by 
adding starting groundwater head values (field observation) and then trial hydraulic 
parameter values were added. The inverse model was run to adjust the trial parameter 
values till the calibration was reached. The field values were then exported for each grid 
for years 1999 to 2012 for January, March, May and October. 

Figure 3 Model boundary with active and inactive cells (see online version for colours) 

 

2.3 Uncertainty analysis 

Groundwater head (‘m’ amsl) contours obtained from the groundwater flow modelling 
were used for uncertainty analysis. The results obtained from the flow modelling were 
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exported as a grid of size 3 km × 3.8 km. A hypothetical network was assumed to add 
OW in each grid for which, a hypothetical monitoring network of 310 OWs was assumed. 
The uncertainty in each OWs was estimated using entropy theory during 1999 to 2012 in 
January, March, May and October months [equation (2)]. Shannon coined the concept of 
entropy theory to measure the uncertainty in the random variables (Shannon and Weaver, 
1949). The marginal entropy (ME) of the random variables X (GWLs in each OWs) with 
N (310 OWs) number of events is expressed as: 

( ) ( )2
1

( ) log
N

n n
n

H X p x p x
=

= −  (2) 

where H(X) is the ME of X random variables and p(x) is the marginal probability 
distribution and n = 1, 2, 3, …, N. For the computation of ME [equation (2)], log base 2 
was used and for a log base 2, the unit is ‘bit’ (Samuel et al., 2013). The ME represents 
the uncertainty in the random variable X. An increase in ME values is related to loss in 
information and decrease in the entropy values indicates a gain in information. 
Table 2 Selected frequency class for computation of ME 

Frequency class GWL range Frequency class GWL range 
1 <200 23 305–310 
2 200–205 24 310–315 
3 205–210 25 315–320 
4 210–215 26 320–325 
5 215–220 27 325–330 
6 220–225 28 330–335 
7 225–230 29 335–340 
8 230–235 30 340–345 
9 235–240 31 345–350 
10 240–245 32 350–355 
11 245–250 33 355–360 
12 250–255 34 360–365 
13 255–260 35 365–370 
14 260–265 36 370–375 
15 265–270 37 375–380 
16 270–275 38 380–385 
17 275–280 39 385–390 
18 280–285 40 390–395 
19 285–290 41 395–400 
20 290–295 42 400–405 
21 295–300 43 405–410 
22 300–305 44 >410 

The assumed hypothetical monitoring network has continuous GWLs data for the 14 year 
period (1999–2012) with 17,360 observations for January, March, May and October. All 
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GWL observations obtained from the groundwater flow model were classified in 44 class 
intervals ranging from 200 to 410 m amsl (Table 2). A frequency table was prepared for 
each 310 OWs. For illustration, sample calculation of one OW (out of 310 OWs) is 
shown in Table 3. ME was estimated for each OW in the study area. The entropy values 
were estimated for all the years from 1999 to 2012. The uncertainty in each OW was 
analysed and the results were compared for January, March, May and October months. In 
order to compare the estimated results, ME values were OWs = OW, GWLs = GWL in m 
amsl, f = frequency normalised on a 0 to 100 scale [equation (3)], where ‘0’indicates 
lowest uncertainty and 100 indicate the highest uncertainty. Table 4 shows the sample 
calculations for some OWs, where ME was converted to normalised marginal entropy 
(NME) and similar computations were performed for other OWs. 

min

max min
100n

ME MEME
ME ME

−= ×
−

 (3) 

where MEn = NME (no unit), MEmax = maximum values of ME (bits) and  
MEmin = minimum values of ME (bits). 
Table 3 Sample table for estimation of ME from year 1999 to 2012 for one OW (out of 310 

OWs) 

GWLs f p(X) log2p(X) –p(X)× log2p(X) 
245–250 1 0.07 –3.81 0.27 
250–255 1 0.07 –3.81 0.27 
255–260 1 0.07 –3.81 0.27 
260–265 3 0.21 –2.22 0.48 
265–270 2 0.14 –2.81 0.40 
270–275 4 0.29 –1.81 0.52 
275–280 1 0.07 –3.81 0.27 
280–285 1 0.07 –3.81 0.27 
   ∑–p(X)× log2p(X) = 2.75 

2.4 Optimisation of GWLMN 

In the final step, the results obtained from groundwater flow and uncertainty analysis 
were utilised in conjunction with hydrological and anthropogenic parameters in a GIS 
environment to optimise the GWLMN. OWs were grouped based on uncertainty results, 
hydrological and anthropogenic parameters (Figure 1 and Table 1). The parameters 
associated with uncertainty in each OWs were analysed to obtain the optimal network. In 
this approach, uncertainty in each OW along with parameters such as land use/land cover 
(LU/LC), proximity to a water body, NCA, CA, aquifer properties, and existing OWs in 
the study, were utilised in a GIS environment to obtain the optimum monitoring network 
of OWs (Figure 1: steps 2 and 3). In each step, OWs with uncertainty values were added 
in each grid of size 3 km × 3.8 km. Based on the uncertainty results and scientific 
parameters, suitability to retain or remove OWs were examined and the grid was refined. 
Three thematic layers as grid, OWs, and proximity to water body were added together 
and based on the uncertainty and the associated properties of parameters, suitability to 
retain or remove the observation was examined for each OWs in a grid. For example, 



   

 

   

   
 

   

   

 

   

   86 Y.B. Katpatal and C.K. Singh    
 

    
 
 

   

   
 

   

   

 

   

       
 

OWs selected based on GWL uncertainty, i.e., ME and the yield ranges of aquifers 
(Tables 1 and 3). OWs removed or retained using two criteria: 

1 OWs with low ME and high yield values were removed 

2 OWs with high ME and low yield were retained and considered as significant for 
monitoring. 

Consequently, the refined grid was further analysed and with three thematic GIS layers 
such as grid, refined OWs, and other parameters including aquifer properties, NCA and 
CA etc. and the step was repeated until all the assumed controlling parameters were 
satisfied. Land use/land cover of the study area was classified as agricultural land (rabi, 
kharif, and double/triple crop), non-agricultural land (built-up area, water bodies, and 
wastelands), and forest (NRSC, 2014). 

Figure 4 Calibration and validation simulation plot of the study area, (a) calibration (1999–2005) 
(b) validation (2006–2012) (see online version for colours) 

  
(a)     (b) 

3 Results and discussion 

3.1 Calibration and validation results of groundwater flow model 
A steady-state groundwater flow model was achieved for the year 2011 pre-monsoon. 
Initially, a forward model was run to calibrate the model, but more time was required to 
converge the model. It was observed that the model was not easily converging, the study 
area being a complex aquifer system (Figure 1 and Table 1). Subsequently, an inverse 
modelling approach was adopted to calibrate the complex aquifer properties. For the 
inverse modelling, a calibration target of 1 m head was fixed. An iterative procedure was 
adopted to adjust the model parameters until the model computed values matching the 
field observed values to an acceptable level of calibration target (less than or equal to 1 
m). The inverse model was run to keep hydraulic conductivity as a variable and the other 
parameters as constants. The calibration period was from 1999 to 2005, while the 
validation period was from 2006 to 2012 (Figure 4). 

The results of observed and computed GWLs obtained from the inverse modelling are 
represented in Figure 5. It was observed that the calibration target was achieved and the 
difference between the observed and computed values is less [Figures 5(b) and 5(c)]. 
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Table 4 Relationship between ME and NME for selected OWs 
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3.2 Season wise uncertainty results in each hypothetical OW 
The groundwater head contours obtained from the flow model were exported in the grid 
format. Hypothetical OWs were added to each grid (Figure 6). A total of 310 hypothetical 
OWs were considered for uncertainty analysis. The magnitude of GWLs in each OW was 
equal to the groundwater head obtained from groundwater flow modelling. The 
uncertainty in the each OW was observed for the months of January, March, May and 
October during 1999 to 2012. The entropy values range from 0 to 100 where ‘0’ indicates 
lowest uncertainty and 100 indicate highest uncertainty. 

Figure 5 Groundwater head contour in m amsl for, (a) observed values (b) computed values  
(c) calibration target (see online version for colours) 

  
(a)     (b) 

 
(c) 

Based on the uncertainty analysis results, NME values such as 0–20, 21–40, 41–60,  
61–80 and 81–100 were grouped into very low, low, moderate, high, and very high 
uncertainty (Figure 7). The results of the entropy analyses show that the location of 
hypothetical OWs present in the months of March and May were the most uncertain. Low 
uncertainty values in OW indicate that the GWL measurement is more predictable. On 
the other hand, if high uncertainty prevails, then GWL measurement fluctuates more over 
a period of time. 

Hence uncertainty is one of the criteria utilised in this study to assure the suitability of 
OWs for GWL measurement. If OWs have low uncertainty, then OWs can be removed 
from the monitoring network. On the contrary, if OWs have high uncertainty, then OWs 
can be retained. But, the judgement only based on uncertainty analysis will provide 
biased results (Singh and Katpatal, 2017a). In addition to uncertainty values of OWs, 
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there are several other hydrological and anthropogenic parameters which influence 
changes in GWL. 

Figure 6 Hypothetical and existing OWs in each grid within the study area (see online version 
for colours) 

 

Figure 7 NME map of January, March, May and October from year1999 to 2012  
(see online version for colours) 
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3.3 Aquifer wise results of uncertainty in existing OW 

Six complex aquifer systems in the study area are alluvium, amgaon gneissic complex, 
mica schist, basalt, calc gneiss marble and unclassified gneissic complex. The aquifer 
properties play an important role in the distribution and movement of groundwater, 
therefore the variation between aquifer systems of the study area affects the changes in 
GWLs. The aquifer properties in the study area were briefly described in Table 1 and 
Figure 1. The ME was estimated in each OW for each of the different aquifer systems. 
The results show that ME of the OWs varies between 0 to 100 (Figure 8). The high and 
low uncertainty values were observed in the OWs for different aquifer system. Overall, 
high ME values were observed in amgaon gneissic complex followed by basalt, 
unclassified gneissic complex, amgaon gneissic complex, mica schist, and alluvium. It 
was observed that the result obtained from the uncertainty analysis harmonises well with 
yield values of the aquifers. For example, high uncertainty values were reported in the 
OWs present in low yield aquifers such as amgaon gneissic complex and basalt, whereas, 
low uncertainty values found in the OWs having high yield aquifers of the alluvium 
aquifer system. 

3.4 Optimisation of GWLMN 

Optimisation of GWLMN was done using uncertainty analysis in conjunction with the 
hydrological and anthropogenic parameters in a GIS environment. The subsequent 
section shows the optimisation results by considering hydrological and anthropogenic 
parameters such as water body, LU/LC, NCA, CA, aquifer properties and existing OWs 
were utilised to optimise the GWLMN. Based on the uncertainty results and individual 
scientific parameters (Chandan and Yashwant, 2017), suitability to retain or remove OWs 
were examined and the grid was refined for redesign using GIS. 

3.4.1 Water body 
First, the water body and uncertainty results of OWs in each grid were superimposed. The 
presence of surface water body near the OWs has direct influence on the GWL 
measurement (Singh and Katpatal, 2017b). Hence, OWs were removed based on 
uncertainty results and the presence of water bodies [Figure 9(a)]. OWs present in each 
grid were refined and OWs in the GWLMN were removed, based on the combination of 
uncertainty results and the presence of water body in each grid. Total 78 OWs were found 
within the proximity of the water bodies, and hence they were removed [Figure 9(b)]. 
Thus, out of 310 OWs, 232 OWs were remaining in the GWLMN. 

3.4.2 Land use/land cover, CA, and NCA 
Land use classification in the study area consists of agricultural land, built up, water 
bodies and non agricultural land (forest and barren land) (Figure 10). Depending upon the 
crop water requirements, the study area was further classified into the CA and NCA. In 
NCA, the major source of water for irrigation is groundwater while in CA, surface water 
is the major source. The OW network was further refined based on uncertainty results 
and the LU/LC characteristics of the study area. The OWs network obtained from the 
result of the previous section with 232 OWs (proximity to water body) was input for this 
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analysis. Groundwater use is less in the forest area, non agricultural land, and CA. The 
OWs present in non agricultural land, CA and forest areas with low uncertainty were 
removed from the network of 232 OWs. Based on the results of this analysis, 112 OWs 
were further removed from the network of 232 OWs. 

Figure 8 Uncertainty assessment of the existing OWs in the study area for different aquifer types 
(see online version for colours) 

 

Figure 9 (a) OWs (310) with NME and water body (b) Optimised OWs (232) after considering 
uncertainty and water body (see online version for colours) 
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Figure 10 (a) OWs (232) with NME (b) Optimised OWs after considering (120) after considering 
uncertainty and LULC (see online version for colours) 

 

3.4.3 Aquifer properties 
The availability of groundwater resources in the aquifer is directly governed by the 
hydrological properties of the aquifer (Singh and Katpatal, 2017b). The lowest yield 
values were reported for amgaon gneissic complex, followed by the unclassified gneissic 
complex, mica schist, calc gneiss marble, and basalt. High yield values were observed for 
alluvium (Table 1). High uncertainty values were found in low yielding aquifers, 
whereas, low uncertainty values were found in the OWs in the alluvium (Figure 7 and 
Table 1). The OWs network was further refined on the basis of uncertainty results and 
complex aquifer properties (Table 1). The input of 120 OWs network was obtained from 
the result of the previous section (LU/LC, CA, and NCA). The OWs located in alluvium 
with low uncertainty values were removed from the network of 120 OWs [Figure 11(a)]. 
Based on the results obtained from this analysis, 10 more OWs were removed from the 
network of 120 OWs [Figure 11(b)]. 

The number of OWs located in the grid was refined based on the combination of 
uncertainty results, hydrological and anthropogenic parameters. Optimised network 
redesigned by further refining by comparing the spatial location of hypothetically 
assigned and existing OWs network (Figure 12). The overlapping common regions where 
the grids were assigned both the hypothetical OWs and existing OWs were identified. 
With the input of 110 OWs (hypothetical) and 29 existing OWs, 23 OWs (hypothetical) 
were removed from the grid. Hence, finally at the end of this analysis 116 OWs were 
identified as the preferred location of OWs. 
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Figure 11 (a) OWs (120) with NME (b) Optimised OWs (110) after considering uncertainty and 
aquifer properties (see online version for colours) 

  
(a)     (b) 

Figure 12 (a) Optimised OWs (110) after considering hydrological and anthropogenic parameters 
(b) Final optimised GWLMN (116 OWs) with 87 hypothetical OWs and 29 existing 
OWs (see online version for colours) 

  

This study underlines the utility of GIS, groundwater flow modelling and entropy theory 
to optimise the GWLMN. The finding of the study includes statistical results (entropy) as 
wells as scientific parameters for effective design of the monitoring network. This study 
further widens the existing knowledge of optimisation of the groundwater monitoring 
network. The proposed method shows clear advantage over other optimisation methods 
appeared in recent research. For example, Mondal and Singh (2012) have employed 
information of existing OWs for optimisation of the network in the Kodanagar River 
Basin, but it does not confirm anything where there are no OWs. 

Hosseini and Kerachian (2017) designed the network using data fusion-based 
methodology, but, no controlling parameters were considered during the design. These 
approaches had not considered important multiple parameters to support the design 
results. From the previous study, it may be observed that the entropy theory is applicable 
for assessment and redesign of monitoring network using only existing network of OWs. 
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However, to overcome this drawback, the present study suggests a new methodology to 
assess and redesign GWLMN. 

4 Conclusions 

The GWLMN was assessed and redesigned by using a groundwater flow model and 
entropy theory in a GIS environment. The study was performed in the complex aquifer 
system of the Wainganga Basin, Central India from years 1999 to 2012. The groundwater 
flow model was calibrated and validated using the MODFLOW. Uncertainty in existing 
and hypothetical OWs was estimated using entropy or information theory. These 
uncertainties were analysed in each hypothetical OWs for January, March, May and 
October months. The results were analysed in space and time for 1999 to 2012. The 
results of the study show that a minimum of 116 OWs were significant for effective 
GWL monitoring. The study suggests that the inclusion of hydrological and 
anthropogenic parameters at the time of design, can significantly improve a GWLMN. 
Inclusion of GW flow model confirms that discrete (entropy)-based analysis and design 
can be applied for spatial and temporal domain. Groundwater flow modelling (GWFM) 
provides spatially explicit GWLs. Uncertainty analysis improved in optimising the 
spatially distributed parameters. GIS incorporates both the spatial-temporal accuracy and 
different hydrological and anthropogenic parameters. The study also suggests that the 
present method can be further refined and applied to design hydrometric networks such 
as precipitation, stream flow and groundwater quality networks. 
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