Real-time system identification of an unmanned quadcopter system using fully tuned radial basis function neural networks
by Mohammad Fahmi Pairan; Syariful Syafiq Shamsudin; Mohd Fauzi Yaakub; Mohd Shazlan Mohd Anwar
International Journal of Modelling, Identification and Control (IJMIC), Vol. 37, No. 2, 2021

Abstract: In this paper, we present the performance analysis of a fully tuned neural network trained with the extended minimal resource allocating network (EMRAN) algorithm for real-time identification of a quadcopter. Radial basis function network (RBF) based on system identification can be utilised as an alternative technique for quadcopter modelling. To prevent the neurons and network parameters selection dilemma during trial and error approach, RBF with EMRAN training algorithm is proposed. This automatic tuning algorithm will implement the network growing and pruning method to add or eliminate neurons in the RBF. The EMRAN's performance is compared with the minimal resource allocating network (MRAN) training for 1000 input-output pair untrained attitude data. The findings show that the EMRAN method generates a faster mean training time of roughly 4.16 ms for neuron size of up to 88 units compared to MRAN at 5.89 ms with a slight reduction in prediction accuracy.

Online publication date: Tue, 11-Jan-2022

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Modelling, Identification and Control (IJMIC):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email