Hash-based and privacy-aware movie recommendations in a big data environment
by Tingting Shao; Xuening Chen
International Journal of Embedded Systems (IJES), Vol. 13, No. 1, 2020

Abstract: Movie recommendation is an important activity in the people's daily entertainment. Typically, through analysing the users' ever-watched movie list, a movie recommender system can recommend appropriate new movies to the target user. However, traditional movie recommendation techniques, e.g., collaborative filtering (CF) often face the following two challenges. First, as CF is essentially a traversal technique, the recommendation efficiency is often low. Second, traditional movie recommender systems often assume that the users' ever-watched movie list for decision-making is centralised, which makes it hard to be applied to the distributed movie recommendation scenarios. In view of these challenges, in this paper, we bring forth an efficient and privacy-aware online movie recommendation approach based on hashing technique. Through experiments on famous MovieLens dataset, we show that our proposal shows a better performance compared with other approaches in terms of recommendation efficiency and accuracy while users' private information is protected.

Online publication date: Wed, 08-Jul-2020

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Embedded Systems (IJES):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com