You can view the full text of this article for free using the link below.

Title: Hash-based and privacy-aware movie recommendations in a big data environment

Authors: Tingting Shao; Xuening Chen

Addresses: Medical Information Engineering School, Jining Medical University, No. 669, Xueyuan Road, Donggang District, Rizhao, China ' Student Affairs Office, Qufu Normal University, No. 80, Yantai Road, Donggang District, Rizhao, China

Abstract: Movie recommendation is an important activity in the people's daily entertainment. Typically, through analysing the users' ever-watched movie list, a movie recommender system can recommend appropriate new movies to the target user. However, traditional movie recommendation techniques, e.g., collaborative filtering (CF) often face the following two challenges. First, as CF is essentially a traversal technique, the recommendation efficiency is often low. Second, traditional movie recommender systems often assume that the users' ever-watched movie list for decision-making is centralised, which makes it hard to be applied to the distributed movie recommendation scenarios. In view of these challenges, in this paper, we bring forth an efficient and privacy-aware online movie recommendation approach based on hashing technique. Through experiments on famous MovieLens dataset, we show that our proposal shows a better performance compared with other approaches in terms of recommendation efficiency and accuracy while users' private information is protected.

Keywords: movie recommendation; collaborative filtering; efficiency; privacy preservation; SimHash.

DOI: 10.1504/IJES.2020.108275

International Journal of Embedded Systems, 2020 Vol.13 No.1, pp.1 - 8

Received: 10 Nov 2018
Accepted: 10 Jan 2019

Published online: 11 May 2020 *

Full-text access for editors Access for subscribers Free access Comment on this article