Returns to schooling in Palestine: a Bayesian approach Online publication date: Thu, 02-Jan-2020
by Mohsen Ayyash; Tareq Sadeq; Siok Kun Sek
International Journal of Education Economics and Development (IJEED), Vol. 11, No. 1, 2020
Abstract: This paper presents an empirical method to find more efficient estimates of returns to schooling using Bayesian linear regression instead of OLS method. The private returns to schooling in Palestine using the Palestinian labour force survey (PLFS) for the year 2017 have been estimated, where on average, males earn 40.7% more than females. Separate regressions have been performed for males and females, in which the returns to schooling for females are found higher than their males' counterparts. Bayesian inference has also been applied into Heckman two-step procedure with logit and probit models to correct self-selection bias for females' sample. It is found that logit Heckman correction yields positive and higher coefficient of years of schooling than probit and OLS. The wage disparities in Palestine have been found influenced by various factors like age, sex, and occupational groups. These findings are useful for policymakers to plan for future investment in higher education.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Education Economics and Development (IJEED):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com