Reliability assessment using probabilistic support vector machines
by Anirban Basudhar; Samy Missoum
International Journal of Reliability and Safety (IJRS), Vol. 7, No. 2, 2013

Abstract: This paper presents a methodology to calculate probabilities of failure using Probabilistic Support Vector Machines (PSVMs). Support Vector Machines (SVMs) have recently gained attention for reliability assessment because of several inherent advantages. Specifically, SVMs allow one to construct explicitly the boundary of a failure domain. In addition, they provide a technical solution for problems with discontinuities, binary responses, and multiple failure modes. However, the basic SVM boundary might be inaccurate; therefore leading to erroneous probability of failure estimates. This paper proposes to account for the inaccuracies of the SVM boundary in the calculation of the Monte Carlo-based probability of failure. This is achieved using a PSVM which provides the probability of misclassification of Monte Carlo samples. The probability of failure estimate is based on a new sigmoid-based PSVM model along with the identification of a region where the probability of misclassification is large. The PSVM-based probabilities of failure are, by construction, always more conservative than the deterministic SVM-based probability estimates.

Online publication date: Sat, 20-Sep-2014

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Reliability and Safety (IJRS):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email