Laser deburring process for structured edges on precision moulds
by Wenlong Chang; Xichun Luo; James Ritchie; Jining Sun; Christopher Mack
International Journal of Nanomanufacturing (IJNM), Vol. 7, No. 3/4, 2011

Abstract: In this paper a laser deburring process is developed to remove micro burrs generated by micromilling processes in order to obtain high quality micro fluidic injection mould. A two-temperature model (TTM) is used to determine the critical laser machining parameters such as the laser energy density and laser power. The laser deburring experiment is carried on by using an Nd:YAG nanosecond laser source with frequency of 15 Hz and a spot size of 5 ?m. The edge quality and the machined surface of micro channels in the micro fluidic mould are measured by a SEM and a white light interferometer. The measurement results show that the micro burrs on the micro channels in the micro fluidic mould have been completely removed. The average surface roughness (Ra) was only 0.114 ?m after the laser deburring process. Therefore, laser deburring process cannot only remove micro burrs on the micro fluidic channel but also help to achieve good surface finish on the mould.

Online publication date: Sat, 07-Mar-2015

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Nanomanufacturing (IJNM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email