Molecular dynamics simulation of mechanical polishing
by Prabhat Ranjan; Anuj Sharma; Tribeni Roy; R. Balasubramaniam; V.K. Jain
International Journal of Precision Technology (IJPTECH), Vol. 8, No. 2/3/4, 2019

Abstract: Mechanical polishing, a nano-finishing process is extensively used for generating smooth surfaces on engineering materials. The mechanism of mechanical polishing is extremely complex due to its random nature of material removal at atomic scale. The need for a better understanding of the process at atomic scale is therefore necessary. Hence, molecular dynamics simulation (MDS) was carried out to understand the behaviour of material removal on two different types of engineering materials viz. aluminium and silicon. In the present work, material removal of rough asperities was modelled and simulated by abrading them with abrasive particles. It was observed that the nanometric abrasion occurs through adhesion de-bonding principle, recoverable phase transformation occurs during the nanometric abrasion on aluminium, and the non-crystalline debris formation during polishing of silicon as brittle crystalline structures. In addition, other attributes are also discussed such as force, stress, chemical stability, effect of abrasive particle, and temperature.

Online publication date: Fri, 19-Jul-2019

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Precision Technology (IJPTECH):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email