These articles have been peer-reviewed and accepted for publication but are pending final changes, are not yet published and may not appear here in their final order of publication until they are assigned to issues. Therefore, the content conforms to our standards but the presentation (e.g. typesetting and proof-reading) is not necessarily up to the Inderscience standard. Additionally, titles, authors, abstracts and keywords may change before publication. Articles will not be published until the final proofs are validated by their authors.
Forthcoming articles must be purchased for the purposes of research, teaching and private study only. These articles can be cited using the expression "in press". For example: Smith, J. (in press). Article Title. Journal Title.
Articles marked with this shopping trolley icon are available for purchase - click on the icon to send an email request to purchase.
Articles marked with this Open Access icon are freely available and openly accessible to all without any restriction except the ones stated in their respective CC licenses.
We also offer
Latest issue contents as RSS feed which provide timely updates of tables of contents, newly published articles and calls for papers.
International Journal of Nanomanufacturing (1 paper in press)
Regular Issues
Tool Wear Mechanism of Micro-milling Inconel 718 Thin Wall by Xiaohong Lu, Yihan Luan, Kun Yang, Feixiang Ruan, Pengrong Hou, Ning Zhao Abstract: Tool wear makes it difficult to obtain high-quality tiny thin wall parts during micro-milling Inconel 718 process. In this paper, tool wear mechanism of coated cemented carbide micro-milling tool is studied based on Inconel 718 thin wall micro-milling experiments. The wear, damage morphology and failure mechanism of the rake face of the circumferential edge and the flank face of the circumferential edge of the micro-milling tool are studied. It is found that the main failure mode of micro-milling tool is the damage of micro-milling tool circumferential edge and coating shedding; the main cause of tool wear is the combination of adhesive wear, diffusion wear and oxidation wear during micro-milling Inconel 718 thin wall parts,. The research provides reference for reducing the tool wear, extending the service life of cutter, and achieving high-quality thin wall parts during micro-milling Inconel 718 process. Keywords: Micro-milling; tool wear; Inconel 718; thin wall.