Forthcoming articles

International Journal of Manufacturing Research

International Journal of Manufacturing Research (IJMR)

These articles have been peer-reviewed and accepted for publication but are pending final changes, are not yet published and may not appear here in their final order of publication until they are assigned to issues. Therefore, the content conforms to our standards but the presentation (e.g. typesetting and proof-reading) is not necessarily up to the Inderscience standard. Additionally, titles, authors, abstracts and keywords may change before publication. Articles will not be published until the final proofs are validated by their authors.

Forthcoming articles must be purchased for the purposes of research, teaching and private study only. These articles can be cited using the expression "in press". For example: Smith, J. (in press). Article Title. Journal Title.

Articles marked with this shopping trolley icon are available for purchase - click on the icon to send an email request to purchase.

Register for our alerting service, which notifies you by email when new issues are published online.

Open AccessArticles marked with this Open Access icon are freely available and openly accessible to all without any restriction except the ones stated in their respective CC licenses.
We also offer which provide timely updates of tables of contents, newly published articles and calls for papers.

International Journal of Manufacturing Research (16 papers in press)

Regular Issues

  • Optimization of resistance spot welding process for real unconstrained and constrained scenarios using cuckoo search algorithm   Order a copy of this article
    by Rushikesh Dandagwhal, C.V. Chavan, Chandrakant Wani 
    Abstract: The optimum selection of process parameters is essential for a designer, as it incur high initial investment, power and; operating and maintenance costs. This article presents optimisation aspects of resistance spot welding process using cuckoo search algorithm. The parameters are studied critically to obtain the optimum settings satisfying one or more quality characteristics. Some constrained and unconstrained single as well as multi-objective optimisation problems related to the practical case studies are solved. The obtained results are compared with those derived by the past researchers. It is found that the present results are better than the previous results in all the cases. The solved examples illustrated a novel effectiveness of the presented algorithm and its application suitability in the field of resistance spot welding.
    Keywords: Resistance spot welding; Cuckoo search algorithm; Optimization; Parameters; Response.
    DOI: 10.1504/IJMR.2019.10015740
     
  • Development of a model to compensate overcut during Electro Discharge Boring process   Order a copy of this article
    by Sudhanshu Kumar, Harshit Dave, Keyur Desai 
    Abstract: Electro discharge boring (EDB) process is novel concept of machining through X-Y tool actuation applied for boring of hard and difficult to machine materials. Unlike conventional boring machining, EDB process is free from vibration, cutting forces or tool deflection. Since, the removal of material takes place due to the action of repetitive sparks therefore overcut is observed in the bored cavity produced during EDB process. In the present study, an effort has been made to predict and reduce the overcut generated during EDB process. Effect of process parameters on overcut have been studied using Taguchi's experimental method and then significant process parameters have been identified using analysis of variance method. Further, a prediction model has been developed using multiple regression analysis for prediction of overcut produced during boring process on Inconel 718 material. Finally, an algorithm has been developed in MATLAB software for compensation of overcut by suggesting compensating orbital radius for specified target diameter of cavity. The test results obtained using proposed algorithm show that the cavities generated are very close to the specified target cavities.
    Keywords: Electro discharge boring; orbital; overcut; ANOVA; regression; MATLAB.
    DOI: 10.1504/IJMR.2019.10018366
     
  • Review on Modeling of Friction Stir Welding Using Finite Element Approach and Significance of Formulations in Simulation   Order a copy of this article
    by Vinayak Malik 
    Abstract: Friction Stir Welding (FSW) is a solid-state joining process which is gaining significance in many joining applications, by overcoming the limitations of other fusion welding processes. For successful incorporation of its potential during industrial applications, mechanism of joining needs to be properly comprehended. The solution lies in developing effective and reliable Finite Element (FE) model of the FSW process, which would help in getting an insight of the process phenomena (like material flow, heat generation, etc.,) during the process. Here a review is made to know the current state of various FE modeling techniques and identifying better techniques for simulating FSW and its variants. This review also highlights shortcomings (for e.g., mesh distortion, simulation time, the inability of defect prediction) of previous models and discusses on grey areas which are still to be addressed in the broader perspective of FSW and its allied processes using FE approach.
    Keywords: FSW; FE Modeling; Industrial Scenario; Formulations; Defect Prediction.
    DOI: 10.1504/IJMR.2020.10018368
     
  • Models framework for laser polishing surfaces obtained by milling and additive manufacturing processes   Order a copy of this article
    by Jean-Yves Hascoët, Benoit Rosa, Pascal Mognol 
    Abstract: The manufacturing chain is usually made of several processes, to create the final surface with regard to design specifications. Manufacturing processes are composed by a complex database, which contains the operating parameters and their settings combinations that impact on the surface parameters. This database may be composed by measured values and it is important to determine the non-measured values through modelling methods to master the final result. This paper aims at establishing a protocol to determine the laser polishing operating parameters for milled and additive laser-manufactured primary surfaces. Several experiments enable to propose models coming from polynomial regression calculus. The proposed models are 88
    Keywords: Laser polishing; milling surfaces; additive manufacturing surfaces; operating parameters; modelling; framework of models.
    DOI: 10.1504/IJMR.2020.10018369
     
  • Laser polishing of additive laser manufacturing surfaces: methodology for parameter setting determination   Order a copy of this article
    by Benoit Rosa, Jean-Yves Hascoët, Pascal Mognol 
    Abstract: This paper focuses on the improvement of thin and complex surfaces obtained with a direct metal deposition (DMD) process through the use of the laser polishing process on the same five-axis machine. This study aims at giving a methodology to determine laser polishing operating parameters and thus master the final topography improvement. On the basis of experiments and a polynomial regression method, the classification and methodology of some operating parameters models are obtained. The proposed methodology is efficient within the feasibility domain and several qualitative objective functions and interactions between the operating parameters are taken into consideration. The proposed operating parameters models, have a 77
    Keywords: Laser polishing; additive manufacturing; modelling; methodology; parameter settings.
    DOI: 10.1504/IJMR.2019.10017571
     
  • Supplier evaluation and selection based on quality matchable degree   Order a copy of this article
    by Wenli Qiang, LiPing Liu 
    Abstract: Supplier evaluation and selection is an important step during the manufacturing process for a product to meet quality requirements. This paper proposes a new supplier evaluation and selection model based on quality matchable degree. In this model, the quantitative and qualitative indicators are involved to describe the quality assurance of suppliers and the manufacturer. The matchable degree of the supplier is calculated according to the quality level of the manufacturer. The multivariate quality loss function method is used to determine the score of each supplier. The implementation of the proposed model is also given in details. An example is presented to illustrate the implementation of the proposed model. The proposed model is compared with other methods are summarized.
    Keywords: supplier evaluation; supplier selection; matchable degree.
    DOI: 10.1504/IJMR.2020.10018316
     
  • Branch and Bound algorithm for identical parallel machine scheduling problem to maximize system availability   Order a copy of this article
    by Asmaa Khoudi, Ali Berrichi 
    Abstract: In the majority of production scheduling studies, the objective is to minimise a criterion which is generally, function of completion times of production jobs. However, for some manufacturing systems, the reliability/availability of machines can be the most important performance criteria towards decision makers. In this paper, we deal with a production scheduling problem on identical parallel machines and the objective is to find the best assignment of jobs on machines maximising the system availability. We assume that the production system can be subject to potentially costly failures then PM actions are performed at the end of production jobs. We have proposed a branch and bound algorithm, dominance rules and an efficient upper bound to solve the proposed model optimally. Computational experiments are carried out on randomly generated test problems and results show the efficiency of the proposed upper bound and dominance rules.
    Keywords: Identical Parallel Machines Preventive Maintenance System Availability Production Scheduling Branch and Bound.
    DOI: 10.1504/IJMR.2020.10018321
     
  • An integrated approach for multi-period manufacturing planning of job-shops   Order a copy of this article
    by VIRAJ TYAGI, AJAI JAIN, P.K. Jain 
    Abstract: In the present study, an integrated methodology of manufacturing planning has been formalised for a capacity constrained job-shop with consideration of capacity planning, loading, scheduling, and process plans flexibility for a given master production schedule. This study aims at generation of production schedules that are compatible with production plans developed at a higher level for feasible implementation at the shop floor. Performance of methodology is assessed for eight case studies from mean tardiness viewpoint. Results indicate that formalised integrated methodology is effective in the complex job-shop environment. Further, mean tardiness performance of integrated methodology is found better than that of the conventional hierarchical approach of manufacturing planning.
    Keywords: Integrated; Manufacturing Planning; Loading; Scheduling and Job-Shop.
    DOI: 10.1504/IJMR.2020.10019046
     
  • RESEARCH CLUSTERING AND THE STATE-OF-THE-ART IN MICRO SHEET METAL FORMING: A REVIEW   Order a copy of this article
    by Aida Mahmudah, Kiswanto Gandjar, Dedi Priadi 
    Abstract: Micro metal forming that offers solutions in micro part manufacturing has been developed rapidly for many years. In this paper, research clustering in the micro sheet metal forming system is elaborated, and the review is presented. A trending research focus in recent years is then discussed. The Investigation into the process is more interesting than other aspects due to size effect phenomena in micro level. It was concluded that more efforts are still needed to fill the gap in developing micro forming technology to meet the industrial application requirements, especially in producing final products with good quality that can be achieved only with good material properties, high tooling technology, proper working parameters, and sophisticated material handling held in precision forming machine.
    Keywords: Micro sheet metal forming; Research clustering; Size effects.
    DOI: 10.1504/IJMR.2019.10019047
     
  • Tool Design and Cutting Parameters Optimization for Plunge Milling Blisk   Order a copy of this article
    by Yaonan Cheng, Jinlong Yang, Diange Zuo, Xu Song, Xinmin Feng 
    Abstract: Because of its complex structure, narrow channel, large metal removal rate and its material belonging to difficult-to-machine material, the machining of blisk is very difficult. It is one of the effective methods to solve the above problems by applying the plunge milling technology, and the tool design and cutting parameters optimisation are of great significance. Firstly, the finite element method is used to design and analyse the geometrical structure, and the static and modal analysis is carried out to ensure the strength of the tool and the stability of the plunge milling. Secondly, the experimental research on the milling titanium alloy was finished by using the designed tool, and the influence of cutting parameters on the cutting force was analysed. Finally, based on the fuzzy comprehensive evaluation method, the cutting parameters are optimised, and the rationality of the tool designed is verified through the experimental study of tool wear.
    Keywords: blisk; difficult-to-machine material; plunge milling tool; cutting parameters.
    DOI: 10.1504/IJMR.2020.10020220
     
  • Workload based order acceptance in seru production system   Order a copy of this article
    by Zhe Zhang, Yong Yin, Yulong Wang 
    Abstract: This paper focuses on the seru loading problem considering order acceptance. In practice, manufacturing company may receive a certain number of orders before the planning period, and each of them has the different processing time, setup time, revenue, tardiness penalty and due date. Due to the limitation of production capacity, the manufacturing company need to make order acceptance and loading decision to maximise profits. According to the parallel structure of seru production system and the characteristics of proposed model, the genetic algorithm with matrix crossover (MCGA) is designed. Finally, two numerical examples are applied to show the practicability and effectiveness of proposed model and algorithm.
    Keywords: seru production system; seru loading; order acceptance; genetic algorithm.
    DOI: 10.1504/IJMR.2020.10021557
     
  • FEM Assessment of the Effects of Machining Parameters in Vibration Assisted Nano Impact Machining of Silicon by Loose Abrasives   Order a copy of this article
    by Jianfeng Ma, Nick Duong, Shuting Lei 
    Abstract: In this paper, the commercial FEM software package ABAQUS 6.14/EXPLICIT is used to model a vibration assisted nano impact machining process by loose abrasives (VANILA), in which an atomic force microscope (AFM) is used as a platform and the nanoabrasives (diamond particles) injected in slurry between the workpiece (silicon) and the vibrating AFM probe impact the workpiece and result in nanoscale material removal. The FEM model is validated first and then is used to investigate the influence of impact speed, impact angle, and the frictional coefficient between the workpiece and abrasives on the nanocavity's size and depth. It is concluded that the impact speed, impact angle, and frictional coefficient between the silicon workpiece and nanoabrasives have substantial influence on the nanocavity's size and depth, the optimal size of which along with material removal rate might be achieved by simultaneously considering impact speed, impact angle, and frictional coefficient.
    Keywords: Finite Element Method (FEM); Nanomachining; Silicon; Vibration Assisted Nano Impact Machining.
    DOI: 10.1504/IJMR.2020.10021558
     
  • Machining path research of thin-walled parts considering initial residual stress   Order a copy of this article
    by Yunan Liu, Min Wang, Xiangsheng Gao, Lili Wu, Xiaodong Jiang 
    Abstract: Thin-walled parts have the low stiffness characteristic. Initial residual stress of thin-walled blanks is an important influence factor on the machining stability. With the different machining paths, the release order of initial residual stress is also different so as to cause the different deformation of the workpiece at the end of machining. The present work outlines machining path research of thin-walled parts with initial residual stress. According to residual stress test by hole-drilling method for casting ZL205A aluminium alloy tapered thin-walled blank, the three-dimensional finite element model with initial residual stress is established to study the deformation of the thin-walled part in three machining paths. The results indicate that the deformation of workpiece in semicircle path is similar to that in straight path. The deformation in contour path is minimal.
    Keywords: thin-walled parts; initial residual stress; machining paths; finite element; machining deformation.
    DOI: 10.1504/IJMR.2020.10021938
     
  • Energy Model for Motion Planning of 2D-Belt Press Line Tending Robots   Order a copy of this article
    by Emile Glorieux, Bo Svensson, Fredrik Danielsson, Prithwick Parthasarathy 
    Abstract: A current trend in production is to reduce energy consumption where possible not only to lower the cost but also to be a more energy efficient entity. This paper presents an energy model to estimate the electrical energy consumption of 2D-belt robots used for material handling in multi-stage sheet metal press lines. An estimation of the energy consumption is computed by the proposed energy model based on the robot components’ specifications, the robot path and trajectory. The proposed model is able to predict the energy consumption offline by simulation, and thus before installation, avoiding the need for physical experiments. It is demonstrated that it can be used for predicting potential energy reductions achieved by optimising the motion planning. Additionally, it is also shown how to investigate the energy saving achieved by using mechanical brakes when the robot is idle. This effectively illustrates the usefulness of the proposed energy model.
    Keywords: energy modelling; motion planning; material handling; trajectory optimisation.
    DOI: 10.1504/IJMR.2020.10023045
     
  • Prediction of three-dimensional coordinate measurement of space points based on BP neural network   Order a copy of this article
    by Xiaohong Lu, Yongquan Wang, Jie Li, Yang Zhou 
    Abstract: In order to improve the measurement accuracy of three-dimensional coordinate measurement system based on dual-PSD, this paper proposes a three-dimensional coordinate measurement method based on back propagation (BP) neural network considering the high ability of the neural network to deal with the complex nonlinear mapping problem. This method can describe the mapping relationship between three-dimensional coordinates of space points in the world coordinate system and coordinates of light spots on dual-PSD well. Levenberg-Marquardt learning algorithm is used to train the network, and then trained BP neural network model is used to predict three-dimensional coordinates of space points. Experimental results show that the average measurement error of space points obtained by the method is low. It proves that the built BP neural network model can be used to predict three-dimensional coordinates of space points.
    Keywords: BP neural network; PSD; three-dimensional coordinate; measurement.
    DOI: 10.1504/IJMR.2020.10024446
     
  • Effect of parameters and optimization of Rotary Ultrasonic Drilling through desirability and PSO   Order a copy of this article
    by Vikas Kumar, Hari Singh 
    Abstract: In this paper, an attempt has been made to drill 'BK-7' using rotary ultrasonic machining (RUM). The effects of machining parameters namely feed, spindle speed and ultrasonic power were investigated on material removal rate (MRR) and chipping thickness (CT). Response surface methodology (RSM) was utilised for developing regression equations for output responses. The response observations were tested through analysis of variance (ANOVA) for recognising the significant input variables. The selected responses were found to be highly influenced by feed and exhibited opposite variation with increase in feed. Furthermore, the study also targets to improve the machining efficacy by optimising the machining parameters using desirability and particle swarm optimisation (PSO) approaches. Both the approaches were found to be equally viable. However, PSO exhibited an ease in obtaining the optimised solution with lesser time to cope up with industrial needs.
    Keywords: Material Removal Rate; Chipping; Particle Swarm Optimization; Regression; Desirability; Rotary Ultrasonic Machining.
    DOI: 10.1504/IJMR.2020.10024448