Forthcoming articles

International Journal of Manufacturing Research

International Journal of Manufacturing Research (IJMR)

These articles have been peer-reviewed and accepted for publication but are pending final changes, are not yet published and may not appear here in their final order of publication until they are assigned to issues. Therefore, the content conforms to our standards but the presentation (e.g. typesetting and proof-reading) is not necessarily up to the Inderscience standard. Additionally, titles, authors, abstracts and keywords may change before publication. Articles will not be published until the final proofs are validated by their authors.

Forthcoming articles must be purchased for the purposes of research, teaching and private study only. These articles can be cited using the expression "in press". For example: Smith, J. (in press). Article Title. Journal Title.

Articles marked with this shopping trolley icon are available for purchase - click on the icon to send an email request to purchase.

Register for our alerting service, which notifies you by email when new issues are published online.

Open AccessArticles marked with this Open Access icon are freely available and openly accessible to all without any restriction except the ones stated in their respective CC licenses.
We also offer which provide timely updates of tables of contents, newly published articles and calls for papers.

International Journal of Manufacturing Research (22 papers in press)

Regular Issues

  • ANALYSIS OF REAL TIME VIBRATION ASSISTED TOOL CONDITION MONITORING IN DRILLING   Order a copy of this article
    by B. Srinivasa Prasad, Y. Rama Mohan Reddy 
    Abstract: Present work primarily focuses on identifying the presence of Drilling tool vibrations during the drilling process. A non-contact vibration transducer Laser Doppler Vibrometer is used as part of this approach. Values of cutting forces and vibration signal features with the progression cutting tool wear in dry machining of Ti-6Al-4V and Al7075 are recorded and analyzed. This paper presents a modified mathematical model in an attempt to understand tool life under vibratory cutting conditions. Identifying the relationship among tool wear, cutting forces and displacement due to vibration is a critical task in the present study. These results are used to predict the evolution of displacement and tool wear in the experiment. The effect of workpiece movement due to vibration on the tool wear is critically examined. Finally, tool wear is determined by the maximum displacement that can be borne in a process for an efficient tool condition monitoring system.
    Keywords: Vibration; Acousto optic emission (AOE); Displacement; Tool wear; Fast Fourier Transform.
    DOI: 10.1504/IJMR.2019.10018362
     
  • Development of semi empirical model on material removal rate in WEDM process for aluminium metal matrix material using dimensional analysis   Order a copy of this article
    by Jaksan D. Patel, Kalpesh D. Maniya 
    Abstract: Wire electrical discharge machining is a non-conventional process for manufacturing complicated and intricate parts. In this paper, dimensional analysis and nonlinear estimation method Quassi Newton was used to established semi empirical model for various aluminium metal matrix material considering pulse on time, wire diameter, peak current and various materials properties likes density, thermal conductivity, electrical conductivity, specific heat capacity, coefficient of thermal expansion, melting temperature, and latent heat of fusion as model parameter. Taguchi L27 orthogonal array were used to perform the experiment for aluminium metal matrix. Semi empirical model shows more than 99% prediction than experiment data. Constant and power indices value of model shows wire diameter, peak current, pulse on time and work material properties such as thermal expansion of coefficient and melting point temperature are significant parameters for material removal rate.
    Keywords: wire electrical discharge machine; Taguchi design; dimensional analysis; orthogonal array; material removal rate.
    DOI: 10.1504/IJMR.2019.10018363
     
  • WEDM process parameter selection using preference ranking method: a comparative study   Order a copy of this article
    by Jaksan D. Patel, Kalpesh D. Maniya 
    Abstract: Wire electrical discharge machining process offer opportunities to manufacturers to improve their technology, competitiveness and profitability through a highly efficient and focused approach to manufacturing effectiveness. Justification, evaluation and selection of WEDM process parameter now have been receiving significant attention in the manufacturing environment. Evaluating alternative WEDM process parameter in the presence of multiple conflicting criteria and performance measures is often a difficult task for the decision-maker. Preference ranking tools are special types of multi-criteria decision-making methods in which the decision-makers preferences on criteria are aggregated together to arrive at the final evaluation and selection of the alternatives. This paper deals with the application of five most potential preference ranking methods for selecting the best WEDM process parameter for desired output characters ices for different aluminium metal matrix composite.
    Keywords: wire cut electrical discharge machining; multi-criteria decisionmaking method; aluminium metal matrix; Taguchi design.
    DOI: 10.1504/IJMR.2019.10018364
     
  • Discrete cuckoo search algorithm for solving the cell formation problem   Order a copy of this article
    by Bouchra KAROUM, Youssef B. El Benani 
    Abstract: The manufacturing cell formation problem is considered one of the rst issues in the designing of cellular manufacturing systems, that attempts to con- struct a set of machine cells and their corresponding product families. The aim is to minimize the inter-cell movements of the products while maximizing the ma- chine utilization. Recently developed cuckoo search algorithm is introduced in this paper to solve this kind of problems which is discrete in nature. The proposed method is combined with a local search mechanism in order to intensify the search and improve the quality of the solutions. In order to demonstrate the e ectiveness of the proposed algorithm, a set of 35 benchmark problems is used; the results are then compared to di erent methods collected from the literature. The results demonstrate that the proposed algorithm is a very e ective and performs well on all test problems since it can reach 32 out of 35 benchmark problems (91.43%).
    Keywords: cell formation problem; cuckoo search algorithm; grouping efficacy; lévy flights; cellular manufacturing.
    DOI: 10.1504/IJMR.2019.10014336
     
  • Statistical investigation of surface roughness and kerf on wire electrical discharge machining performance   Order a copy of this article
    by Jay Pujara, Kartik Kothari, Ashish Gohil 
    Abstract: This paper describes statistical investigation to optimize the process variables such as pulse duration (pulse on), pulse period and peak current that affects the output response surface roughness (SR) and kerf (k) on WEDM through Grey Relational Analysis(GRA). Taguchi L16 design matrix has been used to carry out the experimental work. Response Surface Methodology(RSM) is used to develop the empirical models from the experimental data. Analysis of variance(ANOVA) is used to check the adequacy of the developed models. Based on statistical analysis, it has been found that peak current and pulse off time has a positive influence on SR while pulse on time has a negative influence, as well as peak current and pulse on time, has a negative influence on kerf while pulse off time has a positive influence. Confirmation test shows the application of the optimization technique for predicting optimum conditions to obtained better output responses.
    Keywords: WEDM; Taguchi Design; RSM; response surface methodology; ANOVA; Analysis of variance; GRA; grey relational analysis; kerf; surface roughness.
    DOI: 10.1504/IJMR.2019.10014337
     
  • Analytical Modeling and Experimental Study of Machining of Smart Materials using Submerged Abrasive Waterjet Micromachining Process   Order a copy of this article
    by Sagil James, Anurag Mahajan 
    Abstract: Smart materials are new generation materials which possess great properties to mend themselves with a change in environment. Manufacturing of these materials is extremely challenging, particularly at micron scale due to their extreme mechanical properties. This research investigates Submerged Abrasive Waterjet Machining (SAWJMM) process for micromachining smart ceramic materials. This study presents the mathematical modeling to predict the material removal rate during SAWJMM process. The research also involves experimental study on micromachining of smart materials using an in-house fabricated SAWJMM setup. The study found that SAWJMM process is capable of successfully machining smart materials including shape memory alloys and piezoelectric materials at the micron scale. An analytical predictive model is developed to estimate the MRR during SAWJMM process, and the model is found to be capable of accurately predicting the machining results.
    Keywords: Smart material; Abrasive waterjet micromachining; Material removal rate.
    DOI: 10.1504/IJMR.2019.10014338
     
  • PREDICTION OF SURFACE RESIDUAL STRESS AND HARDNESS INDUCED BY BALL BURNISHING THROUGH NEURAL NETWORKS   Order a copy of this article
    by Carlos E. H. Ventura, Frederico C. Magalhães, A.M. Abrao, Berend Denkena, Bernd Breidenstein, Kolja Meyer 
    Abstract: Ball burnishing is a mechanical surface treatment used for surface finish improvement, surface work hardening and inducement of compressive residual stresses, nevertheless, a great level of interaction is observed among the most relevant factors. Within this scenario, artificial neural networks can be employed to determine the most recommended input parameters in order to achieve the required outcome. In this work, burnishing tests were performed using annealed and hardened AISI 1060 steel specimens and the obtained surface residual stress and hardness values were used to train an artificial neural network. The experimental results showed a nonlinear relationship between the input and output parameters for annealed AISI 1060 steel and support the applicability of artificial neural networks for the burnishing process, whereas a more linear relationship between the input and output parameters was observed for hardened AISI 1060 steel, though burnishing pressure seems to be the most relevant factor affecting residual stress. The artificial neural network and optimization procedure providedconsistent input parameters, thus leading to the inducement of compressive residual stress of higher intensity.
    Keywords: ball burnishing; residual stress; hardness; neural network; optimization; AISI 1060 steel.
    DOI: 10.1504/IJMR.2019.10014339
     
  • Optimization of resistance spot welding process for real unconstrained and constrained scenarios using cuckoo search algorithm   Order a copy of this article
    by Rushikesh Dandagwhal, C.V. Chavan, Chandrakant Wani 
    Abstract: The optimum selection of process parameters is essential for a designer, as it incur high initial investment, power and; operating and maintenance costs. This article presents optimisation aspects of resistance spot welding process using cuckoo search algorithm. The parameters are studied critically to obtain the optimum settings satisfying one or more quality characteristics. Some constrained and unconstrained single as well as multi-objective optimisation problems related to the practical case studies are solved. The obtained results are compared with those derived by the past researchers. It is found that the present results are better than the previous results in all the cases. The solved examples illustrated a novel effectiveness of the presented algorithm and its application suitability in the field of resistance spot welding.
    Keywords: Resistance spot welding; Cuckoo search algorithm; Optimization; Parameters; Response.
    DOI: 10.1504/IJMR.2019.10015740
     
  • Development of a model to compensate overcut during Electro Discharge Boring process   Order a copy of this article
    by Sudhanshu Kumar, Harshit Dave, Keyur Desai 
    Abstract: Electro discharge boring (EDB) process is novel concept of machining through X-Y tool actuation applied for boring of hard and difficult to machine materials. Unlike conventional boring machining, EDB process is free from vibration, cutting forces or tool deflection. Since, the removal of material takes place due to the action of repetitive sparks therefore overcut is observed in the bored cavity produced during EDB process. In the present study, an effort has been made to predict and reduce the overcut generated during EDB process. Effect of process parameters on overcut have been studied using Taguchi's experimental method and then significant process parameters have been identified using analysis of variance method. Further, a prediction model has been developed using multiple regression analysis for prediction of overcut produced during boring process on Inconel 718 material. Finally, an algorithm has been developed in MATLAB software for compensation of overcut by suggesting compensating orbital radius for specified target diameter of cavity. The test results obtained using proposed algorithm show that the cavities generated are very close to the specified target cavities.
    Keywords: Electro discharge boring; orbital; overcut; ANOVA; regression; MATLAB.
    DOI: 10.1504/IJMR.2019.10018366
     
  • Review on Modeling of Friction Stir Welding Using Finite Element Approach and Significance of Formulations in Simulation   Order a copy of this article
    by Vinayak Malik 
    Abstract: Friction Stir Welding (FSW) is a solid-state joining process which is gaining significance in many joining applications, by overcoming the limitations of other fusion welding processes. For successful incorporation of its potential during industrial applications, mechanism of joining needs to be properly comprehended. The solution lies in developing effective and reliable Finite Element (FE) model of the FSW process, which would help in getting an insight of the process phenomena (like material flow, heat generation, etc.,) during the process. Here a review is made to know the current state of various FE modeling techniques and identifying better techniques for simulating FSW and its variants. This review also highlights shortcomings (for e.g., mesh distortion, simulation time, the inability of defect prediction) of previous models and discusses on grey areas which are still to be addressed in the broader perspective of FSW and its allied processes using FE approach.
    Keywords: FSW; FE Modeling; Industrial Scenario; Formulations; Defect Prediction.
    DOI: 10.1504/IJMR.2020.10018368
     
  • Models framework for laser polishing surfaces obtained by milling and additive manufacturing processes   Order a copy of this article
    by Jean-Yves Hascoët, Benoit Rosa, Pascal Mognol 
    Abstract: The manufacturing chain is usually made of several processes, to create the final surface with regard to design specifications. Manufacturing processes are composed by a complex database, which contains the operating parameters and their settings combinations that impact on the surface parameters. This database may be composed by measured values and it is important to determine the non-measured values through modelling methods to master the final result. This paper aims at establishing a protocol to determine the laser polishing operating parameters for milled and additive laser-manufactured primary surfaces. Several experiments enable to propose models coming from polynomial regression calculus. The proposed models are 88
    Keywords: Laser polishing; milling surfaces; additive manufacturing surfaces; operating parameters; modelling; framework of models.
    DOI: 10.1504/IJMR.2020.10018369
     
  • Laser polishing of additive laser manufacturing surfaces: methodology for parameter setting determination   Order a copy of this article
    by Benoit Rosa, Jean-Yves Hascoët, Pascal Mognol 
    Abstract: This paper focuses on the improvement of thin and complex surfaces obtained with a direct metal deposition (DMD) process through the use of the laser polishing process on the same five-axis machine. This study aims at giving a methodology to determine laser polishing operating parameters and thus master the final topography improvement. On the basis of experiments and a polynomial regression method, the classification and methodology of some operating parameters models are obtained. The proposed methodology is efficient within the feasibility domain and several qualitative objective functions and interactions between the operating parameters are taken into consideration. The proposed operating parameters models, have a 77
    Keywords: Laser polishing; additive manufacturing; modelling; methodology; parameter settings.
    DOI: 10.1504/IJMR.2019.10017571
     
  • Supplier evaluation and selection based on quality matchable degree   Order a copy of this article
    by Wenli Qiang, LiPing Liu 
    Abstract: Supplier evaluation and selection is an important step during the manufacturing process for a product to meet quality requirements. This paper proposes a new supplier evaluation and selection model based on quality matchable degree. In this model, the quantitative and qualitative indicators are involved to describe the quality assurance of suppliers and the manufacturer. The matchable degree of the supplier is calculated according to the quality level of the manufacturer. The multivariate quality loss function method is used to determine the score of each supplier. The implementation of the proposed model is also given in details. An example is presented to illustrate the implementation of the proposed model. The proposed model is compared with other methods are summarized.
    Keywords: supplier evaluation; supplier selection; matchable degree.
    DOI: 10.1504/IJMR.2020.10018316
     
  • Branch and Bound algorithm for identical parallel machine scheduling problem to maximize system availability   Order a copy of this article
    by Asmaa Khoudi, Ali Berrichi 
    Abstract: In the majority of production scheduling studies, the objective is to minimise a criterion which is generally, function of completion times of production jobs. However, for some manufacturing systems, the reliability/availability of machines can be the most important performance criteria towards decision makers. In this paper, we deal with a production scheduling problem on identical parallel machines and the objective is to find the best assignment of jobs on machines maximising the system availability. We assume that the production system can be subject to potentially costly failures then PM actions are performed at the end of production jobs. We have proposed a branch and bound algorithm, dominance rules and an efficient upper bound to solve the proposed model optimally. Computational experiments are carried out on randomly generated test problems and results show the efficiency of the proposed upper bound and dominance rules.
    Keywords: Identical Parallel Machines Preventive Maintenance System Availability Production Scheduling Branch and Bound.
    DOI: 10.1504/IJMR.2020.10018321
     
  • On the quality of unsupported overhangs produced by laser powder bed fusion   Order a copy of this article
    by Gabriele Piscopo, Alessandro Salmi, Eleonora Atzeni 
    Abstract: One of the main design constraints for additive manufacturing is the definition of downward-facing surfaces, which can lead to problems, like part failing or warping, during construction and poor surface quality. In this paper, a specific index has been defined to represent the surface quality of the downward-facing surfaces induced by the laser powder bed fusion (L-PBF) process. In order to validate the quality index, a design of experiment (DoE) that considers geometric parameters of the overhangs has been defined and carried out, and the quality of resulting surfaces has been evaluated using an optical scanning system. The statistical analysis (ANOVA) has allowed identifying the relationships between significant geometrical parameters and the quality index here proposed.
    Keywords: Additive Manufacturing; Selective Laser Melting; Powder Bed Fusion; Unsupported overhangs; Surface quality; Process parameters; Roughness; Optical scanning system.
    DOI: 10.1504/IJMR.2020.10019045
     
  • An integrated approach for multi-period manufacturing planning of job-shops   Order a copy of this article
    by VIRAJ TYAGI, AJAI JAIN, P.K. Jain 
    Abstract: In the present study, an integrated methodology of manufacturing planning has been formalised for a capacity constrained job-shop with consideration of capacity planning, loading, scheduling, and process plans flexibility for a given master production schedule. This study aims at generation of production schedules that are compatible with production plans developed at a higher level for feasible implementation at the shop floor. Performance of methodology is assessed for eight case studies from mean tardiness viewpoint. Results indicate that formalised integrated methodology is effective in the complex job-shop environment. Further, mean tardiness performance of integrated methodology is found better than that of the conventional hierarchical approach of manufacturing planning.
    Keywords: Integrated; Manufacturing Planning; Loading; Scheduling and Job-Shop.
    DOI: 10.1504/IJMR.2020.10019046
     
  • RESEARCH CLUSTERING AND THE STATE-OF-THE-ART IN MICRO SHEET METAL FORMING: A REVIEW   Order a copy of this article
    by Aida Mahmudah, Kiswanto Gandjar, Dedi Priadi 
    Abstract: Micro metal forming that offers solutions in micro part manufacturing has been developed rapidly for many years. In this paper, research clustering in the micro sheet metal forming system is elaborated, and the review is presented. A trending research focus in recent years is then discussed. The Investigation into the process is more interesting than other aspects due to size effect phenomena in micro level. It was concluded that more efforts are still needed to fill the gap in developing micro forming technology to meet the industrial application requirements, especially in producing final products with good quality that can be achieved only with good material properties, high tooling technology, proper working parameters, and sophisticated material handling held in precision forming machine.
    Keywords: Micro sheet metal forming; Research clustering; Size effects.
    DOI: 10.1504/IJMR.2019.10019047
     
  • Using of Least Square (LS) and Fuzzy Logic methods to estimate the cutting forces for a new tool in machining of SAE4140   Order a copy of this article
    by Aydin Salimi, Maghsoud Shalvandi, Esmaeil Seid 
    Abstract: In this paper, analytical-empirical and fuzzy logic based models were created to predict the cutting forces in turning process for a new tool. A dynamometer that measure static cutting forces was used for measuring the forces. AISI 4140 steel was used as the work piece material for conducting the experiments due to its most common applications in machining process industry. Cutting force, thrust force and radial force were measured for three combinations of cutting speeds (V), cutting feeds (f) and cutting depths (d). Full factorial method was used to design the experiments. For developing the analytical model the least square method (LS) was used to estimate the model constants. Experimental results were compared with the predicted results for both of the developed models. The comparing results show the efficiency of the both developed models. However, the results confirm that the accuracy of the fuzzy model is much higher than the analytical model in prediction of the cutting forces.
    Keywords: Cutting forces; Modeling; Fuzzy logic; LSM.
    DOI: 10.1504/IJMR.2019.10019976
     
  • Tool Design and Cutting Parameters Optimization for Plunge Milling Blisk   Order a copy of this article
    by Yaonan Cheng, Jinlong Yang, Diange Zuo, Xu Song, Xinmin Feng 
    Abstract: Because of its complex structure, narrow channel, large metal removal rate and its material belonging to difficult-to-machine material, the machining of blisk is very difficult. It is one of the effective methods to solve the above problems by applying the plunge milling technology, and the tool design and cutting parameters optimisation are of great significance. Firstly, the finite element method is used to design and analyse the geometrical structure, and the static and modal analysis is carried out to ensure the strength of the tool and the stability of the plunge milling. Secondly, the experimental research on the milling titanium alloy was finished by using the designed tool, and the influence of cutting parameters on the cutting force was analysed. Finally, based on the fuzzy comprehensive evaluation method, the cutting parameters are optimised, and the rationality of the tool designed is verified through the experimental study of tool wear.
    Keywords: blisk; difficult-to-machine material; plunge milling tool; cutting parameters.
    DOI: 10.1504/IJMR.2020.10020220
     
  • Parametric investigation and optimisation of plasma arc cutting of structural steel St.52-3 using grey-based fuzzy algorithm.   Order a copy of this article
    by Pratik Kapse, Martand, T. Telsang 
    Abstract: This paper reports parametric optimisation of air plasma arc cutting (PAC) of structural steel St.52-3, which is widely used in bridge construction and ship building. Response variables considered are material removal rate, a surface roughness (Rz5-mean height of profile) as well as a size of heat affected zone (HAZ) which are critical for corresponding fatigue life. Screening experiment showed pressure, current, arc voltage and speed as factors having an influence on responses of interest. The experimental runs were planned by using Box-Behnken response surface design, and the grey-based fuzzy algorithm was employed to predict the optimal process parameter setting combination. The confirmation test conducted shows an improvement in grey-fuzzy relational grade by about 19%. This highlights the usefulness of grey-fuzzy algorithm as a multi-objective optimiser for plasma arc cutting. The effect of process parameters on performance characteristics has also been discussed resulting in better understanding of the plasma arc cutting process.
    Keywords: Plasma arc cutting; St.52-3; Box-Behnken design; Optimisation; Grey based fuzzy algorithm.
    DOI: 10.1504/IJMR.2019.10020606
     
  • An interference-and-chatter free tool orientation planning method for 5-axis NC machining   Order a copy of this article
    by Xu Liu, Xiaonan Pu, Sisheng Yang, Xiang Ling 
    Abstract: Five-axis machine tools are widely applied in machining parts with complex structure or geometric shape because of the two additional rotary axes. Meanwhile, the solution space of the tool orientations is significantly enlarged. Interference is considered in most traditional methods to compute feasible tool orientation space. However, since the surface quality requirements keep increasing, machining stability should be seriously confirmed. This paper proposes a new tool orientation planning method by considering both interference and chatter avoidance. Interference-free tool orientation space is first computed at each cutter location point (CLP). Then the machining stability is evaluated to eliminate the tool orientations leading to machining chatter from the interference-free tool orientation space. Based on this interference-and-chatter-free tool orientation space, a tool orientation smoothing strategy is implemented. The proposed method is tested by two cases and the experimental comparison results show that interference and chatter avoidance can be achieved.
    Keywords: 5-axis NC machining; tool path generation; tool orientation planning; interference free; chatter free.
    DOI: 10.1504/IJMR.2019.10020607
     
  • Modeling and Experiment of Milling Force under All Fiber Orientation Angles in Slot Milling of Unidirectional CFRP Laminates   Order a copy of this article
    by Lei Zhou, Weiwei Ming, Changying Wang, Xiaojiang Cai, Lulu Jing, Ming Chen 
    Abstract: Milling force is an important factor in determining the machined surface quality of Carbon fibre reinforced polymer (CFRP) in milling process. This paper focuses on the radial force and tangential force under different fibre orientation angles during the milling of unidirectional T800/X850 CFRP laminates. The traditional straight slot milling is replaced by the circumferential slot milling in the experiment and the idea of small scale approximation is applied in analysis of data. Using this method, the milling force under all fibre orientation angles can be obtained approximately by a single experiment and the radial force and tangential force during the milling process can be obtained through mechanical modelling. Through processing experimental data, the coefficients in the theoretical formula of CFRP milling are fitted to get a function about milling force on cut depth, feed and tool rotation angle. And this function can be used to optimise milling parameters and fibre orientation during slot milling.
    Keywords: unidirectional CFRP; milling force; coefficient; fiber orientation angle.
    DOI: 10.1504/IJMR.2019.10020608