Forthcoming and Online First Articles

International Journal of Materials and Product Technology

International Journal of Materials and Product Technology (IJMPT)

Forthcoming articles have been peer-reviewed and accepted for publication but are pending final changes, are not yet published and may not appear here in their final order of publication until they are assigned to issues. Therefore, the content conforms to our standards but the presentation (e.g. typesetting and proof-reading) is not necessarily up to the Inderscience standard. Additionally, titles, authors, abstracts and keywords may change before publication. Articles will not be published until the final proofs are validated by their authors.

Forthcoming articles must be purchased for the purposes of research, teaching and private study only. These articles can be cited using the expression "in press". For example: Smith, J. (in press). Article Title. Journal Title.

Articles marked with this shopping trolley icon are available for purchase - click on the icon to send an email request to purchase.

Online First articles are published online here, before they appear in a journal issue. Online First articles are fully citeable, complete with a DOI. They can be cited, read, and downloaded. Online First articles are published as Open Access (OA) articles to make the latest research available as early as possible.

Open AccessArticles marked with this Open Access icon are Online First articles. They are freely available and openly accessible to all without any restriction except the ones stated in their respective CC licenses.

Register for our alerting service, which notifies you by email when new issues are published online.

We also offer which provide timely updates of tables of contents, newly published articles and calls for papers.

International Journal of Materials and Product Technology (1 paper in press)

Regular Issues

  • A finite element model of fracture toughness of ultra-high performance concrete   Order a copy of this article
    by Zhi-yong He, Ya-feng Zhang, Tian-you Chen 
    Abstract: UHPC is the most promising building material. It is of great significance to establish a finite element model that is consistent with the actual situation for the study of the mechanical properties of UHPC. The paper presents a numerical method for modelling the fracture toughness of UHPC. The finite element model adopts separated modelling, considering UHPC as a two-phase material, and establishes a concrete matrix model and a steel-fibre model respectively. The concrete matrix adopts the concrete damaged plasticity (CDP) model. A large number of disjoint and randomly distributed cylinders are generated in Abaqus through Python to simulate steel fibres and are embedded in the concrete matrix. The bond-slip relationship between steel fibres and concrete is indirectly simulated through the tensile stress-strain relationship of steel fibres. The finite element model is used to simulate the uniaxial tensile experiment and the three-point bending experiment of UHPC. The established finite element model is of higher accuracy than the line-element steel-fibre model used in previous studies, and is more consistent with experimental data, which verifies the effectiveness of the numerical method.
    Keywords: ultra-high performance concrete; UHPC; concrete damaged plastic; CDP; finite element model; fracture toughness; Abaqus.