Forthcoming articles

International Journal of Medical Engineering and Informatics

International Journal of Medical Engineering and Informatics (IJMEI)

These articles have been peer-reviewed and accepted for publication but are pending final changes, are not yet published and may not appear here in their final order of publication until they are assigned to issues. Therefore, the content conforms to our standards but the presentation (e.g. typesetting and proof-reading) is not necessarily up to the Inderscience standard. Additionally, titles, authors, abstracts and keywords may change before publication. Articles will not be published until the final proofs are validated by their authors.

Forthcoming articles must be purchased for the purposes of research, teaching and private study only. These articles can be cited using the expression "in press". For example: Smith, J. (in press). Article Title. Journal Title.

Articles marked with this shopping trolley icon are available for purchase - click on the icon to send an email request to purchase.

Register for our alerting service, which notifies you by email when new issues are published online.

Open AccessArticles marked with this Open Access icon are freely available and openly accessible to all without any restriction except the ones stated in their respective CC licenses.
We also offer which provide timely updates of tables of contents, newly published articles and calls for papers.

International Journal of Medical Engineering and Informatics (89 papers in press)

Regular Issues

  • Access control to the electronic health records: A case study of an Algerian health organization   Order a copy of this article
    by Asma Belaidi, Mohammed El Amine Abderrahim 
    Abstract: Accessibility to information resources in health systems is a very important aspect. This article is about the protection of medical data and focused primarily on access control in health information systems. It is therefore a question of proposing a rigorous modelling allowing to take care of all the aspects related to the secure management of electronic health record. We proposed in the first time a model to the management of the electronic health record in the context of an Algerian health organization. Based on this modeling and by using Or-BAC model, in a second time, we proposed a model of the access control to this electronic health record. The validation of this model using the MotOrBAC tool allowed us a safe passage to an implementable specification. As a result, we develop a set of simple and effective tools to support this aspect.
    Keywords: Electronic health records; Access Control; Or-BAC; MotOrBAC.

  • A Predictive Model for Identifying Health Trends Among Mori and Pacific People Analysis from 10-years of New Zealand Public Hospital Discharges   Order a copy of this article
    by Shaolong Wang, Farhaan Mirza, Mirza Baig 
    Abstract: Our research was focused on the quality of healthcare services for Māori and Pacific Islanders. We used New Zealand (NZ) public hospital discharges data from 2005 to 2015 for our research. A prediction model has been developed to predict the trends for patients with a specific chronic disease, external injuries and operative procedures based on the previous/historic data. Initial exploration suggests that the service demand increased from 138,656 in 2005 to 163,386 in 2015. We successfully analyzed the diseases with highest incidence rate and key characteristics of this group of patients. Our research concluded with a series of key findings on the disease types including injuries, procedures, and services.
    Keywords: Predictive model; hospital discharges; machine learning model; data analysis; machine learning; predictive analysis; healthcare delivery; disease prediction; operative procedures; Māori Population and Pacific Islanders.

  • An effective algorithm to measure the loss of consciousness degree in epileptic seizure   Order a copy of this article
    by BAAKEK YETTOU Nour El Houda, Debbal Sidi Mohammed 
    Abstract: In this work, a new algorithm is developed to measure the loss of consciousness degrees in normal, pre-ictal, and epileptic seizure cases using bi-spectral analysis. The study is carried out on the electroencephalogram EEG signals; in which 200 records are used as pre-ictal cases, and 100 records are used as epileptic cases. All these cases are compared to 100 normal cases which represent the EEG signal in relaxed and in an awake state with open eyes. The obtained results are very satisfactory and show the efficiency of the proposed algorithm. the unconsciousness degree is very low in normal cases, very high in pre-ictal cases, and varies between high to middle during epileptic seizure cases. The algorithm promising for studying the unconsciousness degree in other cases such as anesthesia and in hypnosis cases.
    Keywords: EEG signal; loss of consciousness degree; normal cases; pre-ictal cases; epileptic cases; Bispectral analysis.

  • R-peak detection for improved analysis in health informatics   Order a copy of this article
    by VARUN GUPTA 
    Abstract: Improvement in R-peak detection of Electrocardiogram (ECG) signal is still not saturated even requires better preprocessing, feature extraction and detection stage. Proper detection of heart diseases using the proposed technique only leads to increase its applications in medical engineering for health informatics. R-peak detection is very important for detecting heart diseases, but the involvement of various types of noises makes its detection too much complex. In this work, discrete wavelet transform (DWT) is used as preprocessing tool and Hilbert transform (HT) is used as a feature extraction tool for spectral estimation (in the form of trajectory pattern). Finally, principal component analysis (PCA) is adopted for reducing feature vectors. Detection of R-peaks is accomplished on the basis of variance obtained by first principal component (PC1). For validating this research work MIT/BIH (Massachusetts Institute of Technology/Beth Israel Hospital) Arrhythmia database has been used. The proposed technique was evaluated in MATLAB environment R2015a. The detection sensitivity (SE), positive predictivity (PP), F-score (F-s) and mean squared error (MSE) are estimated for evaluating the performance of the proposed technique. The proposed technique has resulted into SE of 99.88%, PP of 99.88%, F-s of 99.88%, SNR of 7.60dB and MSE of 0.8131%.
    Keywords: Electrocardiogram; medical engineering; health informatics; DWT.

  • A robust Photoplethysmographic imaging for contactless heart and respiratory rates measurement using a simple webcam   Order a copy of this article
    by Djamaleddine DJELDJLI, Fethi BEREKSI REGUIG, Choubeila MAAOUI 
    Abstract: Video Photoplethysmography has been a resurgence of interest of researchers from different domains of science, driven by the demand of low cost, comfortable, contactless, non-stressful, simple and portable technology for physiological parameters measurements. In this paper, we propose a robust and simple method for remotely measure heart and respiratory activities through video Photoplethysmographic signal recordings using a low-cost webcam. The Video Photoplethysmographic signal is detected from colour video recording of a human face in an ambient light environment. The image and signal processing operations steps are minimized and optimized. Three critical aspects are endorsed during the implementation. These are performances, reduced computational time and low computational complexity. Experimental heart rate, breathing rate, and heart rate variability obtained results on 20 healthy subjects show a high correlation with those obtained using an approved contact sensor. The heart rate error obtained in the proposed method is
    Keywords: ambient light; facial images; low-cost webcam; physiological parameters; Photoplethysmography; video recording.

  • Predicting Treatment Outcome of Spinal Musculoskeletal Pain Using Artificial Neural Networks: A Pilot Study   Order a copy of this article
    by Ali Al-yousef, Haytham Eloqayli, Anwar Almoustafa, Mamoon Obiedat 
    Abstract: Musculoskeletal pain is a heterogeneous condition with multiple risk factors, primary sources that can affect treatment and rehabilitation outcome. In this paper, we developed a prediction model for therapeutic subgrouping of musculoskeletal pain using ANN. A dataset of 27 patients with neck/shoulder pain. Patients received a single injection(0.2 ml) of 0.5% lidocaine at the trigger points.ANN model were used for predicting treatment outcome based on influential pre-treatment variables as inputs. Leave One Out Cross Validation (LOOCV) method was used for validation. The strength of each predicting variable was tested using Multilayer Feed Forward Neural Network with Back Propagation(MFFNN) and LOOCV. Then, the MFFNN prediction model was developed and designed based on the selected variables. Post-treatment endpoint follow-up(4th week VAS) was selected as a good indicator of treatment outcome. Serum vitamin D and ferritin were relatively better predictors of treatment response in the current patient group. ANN obtained 85% prediction accuracy.
    Keywords: spine; neurosurgery; pain; ANN; neuron; spinal cord; AI; feature selection,DSS.

  • An enhanced, efficient, affordable wearable elderly monitoring system with fall detection and indoor localization.   Order a copy of this article
    by Ch Vineeth, Anudeep Juluru, Gudimetla Kowshik, Shriram K Vasudevan 
    Abstract: According to the statistics of NCOA (National Council on Aging) these days rate of death in the old aged people has reached a critical state that, for every 11 seconds an older adult is being treated for a fall and for every 19 minutes a death is reported. Most of the people leave their parents alone in the home and go for their respective jobs. In case of any fall or mishap happens to the elderly who are back at home, they are left unnoticed which may be fatal or lead to incurable disease like hip injuries, hemorrhage, tachyarrhythmia which is approximate to a cardiac arrest or even lead to death. In order to reduce these types of risks faced by elderly people, we designed an affordable IoT wearable product that can monitor their movement, the health of old people which can detect their fall immediately. Falls inside the bathroom may be fatal even for young, healthy people. Most of the elderly persons tend to remove their wearables before entering the bathroom and one cant force them either. In order to detect falls even without wearable band, we designed a smart bathroom which is capable of detecting falls and alerts when a fall occurs. These type of bathrooms can be installed in houses, hotels in order to ensure their customer safety. Deaths due to unnoticed falls inside the bathroom can be prevented by installing our system, which will alert the respective authorities immediately when a fall is detected.
    Keywords: Fall detection; Old age support; IoT for medicine; Old aged tracking system; Android App; Bathroom fall; Indoor Localisation.

  • A new design of real-Time monitoring and spectral analysis of EEG and ECG Signals for epileptic seizure detection   Order a copy of this article
    by Boumedyen BELAID, Zine-Eddine HADJ SLIMANE 
    Abstract: The evolution of telecommunications technology has made significant contributions and advances in medical technology. Most of the time, monitoring and evaluation require the use of more than two signals simultaneously recorded. Simultaneous monitoring of the electrocardiogram (ECG) and the electroencephalogram (EEG) is very useful to have information about general state of health of the patient. In this paper, a novel mono-channel wireless ECG&EEG system for epileptic seizure detection is presented. The system employs analog circuits to acquisition, processing and spectral analysis of ECG and EEG signals simultaneously. Arduino Platform is used to digitize and spectral analysis of signals. A 128x64 Graphic LCD Display module and a Bluetooth module are also used for plotting and transmission of signals. We also propose the magnitude squared coherence (MSC) as an important parameter to calculate in frequency domain the relationship between ECG and EEG signals and use it as a relevant discriminator in seizures and the epilepsies classification.
    Keywords: Electrocardiogram (ECG); Electroencephalogram (EEG); Arduino; Bluetooth; 128x64 Graphic LCD Display Module; magnitude squared coherence (MSC); Epileptic seizure detection.

  • Detection of Dichromacy and Achromatopsia Using LabVIEW   Order a copy of this article
    by Kandaswamy A, MALAR ELANGEERAN, Ahilaa T.D., Indrani R. 
    Abstract: The eyes are undoubtedly the most sensitive and delicate organ we possess, and perhaps the most amazing. We rely on our eyesight more than any other sense. Such a human eye faces numerous problems, one such problem with maximum difficulty is Dichromacy and Achromatopsia i.e. complete color blindness. Color blindness is a condition in which people may have mild to severe difficulty in identifying colors. They may not be able to recognize various shades of colors and, in some cases, cannot recognize colors at all. The retinal cone cells are responsible for color white or gray. Total color blindness is called Achromatopsia. This software proposes vision. The three basic types of color blindness are Red, Green and Blue color blindness-generally called as Dichromacy. Red and Green color blindness is more common whereas Blue color blindness- rare type and people cannot distinguish blue or yellow and both the colors are seen as a color vision test using LabVIEW for the early detection of color blindness and helps to prevent Achromatopsia. This virtual instrument is ideal for mass screening in education institutions, clinics, etc., for the early detection of color blindness.
    Keywords: Achromatopsia; Colorblindness; Dichromacy; Ishihara chart.

  • Performance evaluation of a computational model for brain shift calculation   Order a copy of this article
    by Karin Correa, Natividad Bermejo, Oscar Andrés Vivas, José Maria Sabater 
    Abstract: This article shows a solution for the computation of deformable tissues displacements in the brain shift problem in neurosurgery. In this type of surgery, the brain moves and deforms, changing the pre-surgical reference the surgeon had before the intervention. Among the causes of brain shift are the effect of gravity, loss of cerebrospinal fluid as a consequence of the resection practiced, the effect of the drugs supplied, among others. This document refers to the physical model of this displacement to later simulate them in multiphysics software. A phantom test was constructed by means of hydrogels, imitating the porcine brain tissue, which is subjected to compression along the z axis. The results show that the simulation proposed reproduces the behavior of the real phantom with a high level of accuracy. The application developed may serve in the future to reproduce the total behavior of the brain and thus obtain a better calculation of the brain shift.
    Keywords: Neurosurgery; brain shift; neuronavigation; medical robotics; constitutive models; hyperelastic material model; constitutive parameters.

  • Brainwave entrainment through external sensory stimulus: a therapy for insomnia   Order a copy of this article
    by Karuppathal Easwaran, Kalpana R, Srinivasan A.V 
    Abstract: In this work audio, visual and haptic stimuli are used to improve overall sleep quality for insomnia subjects. Two audio signals at two different frequencies were given to left and right ears. This results in binaural beat signal in delta band. Visual input is also given to two eyes through eye-mask to block the entry of external light. Automated system is developed to give pressure at HT-7 with time and pressure control. This therapy is self-administered by the TEST group (who are diagnosed for insomnia) for a brief period on regular pace. Brain signals are acquired before and after therapy to understand the influence of AVE. Subjects who are not into insomnia (CONTROLs) are also studied for sleep pattern to make baseline comparison. By analysing power spectrum of these signals, results demonstrate that average delta signal power increases by 10% becoming at par with CONTROLs. The test responses are also statistically analysed using Cohens d value. The obtained results demonstrate impact of this therapy as significant changes in quality of sleep. Also, insomnia subjects who are not into oral medicine shows better response, in the sense their rhythmic changes became almost similar to that of CONTROLs with marked increase in REM state duration, reaching 20% of full sleep time, a normally recommended value. Thus this being a drug free therapy could be useful to treat insomnia soon after diagnosis and hence could prove to be more useful to the society.
    Keywords: Acupressure; Cohen’s d value; Electroencephalography; Insomnia; Power spectrum; Sleep.

  • The Fundamental Variable of Stress Detection in Health Information System to Measure Health Workers Current Mental Health   Order a copy of this article
    by Bens Pardamean, Wikaria Gazali, Hery Harjono Muljo, Teddy Suparyanto, Bharuno Mahesworo 
    Abstract: The tension or stress that is experienced by health workers can affect the workers performance which might cause clinical errors while doing medical procedures. Human Resource for Health Information System (HRHIS) is an application that collects, stores and analyses health worker related data, should be utilized for stress level detection. The purpose of this paper is to review the needs to utilize HRHIS as a tool for detecting stress level. To find out the current psychological state of health workers, we used a list of questions related to their mental condition and life satisfaction. The result of this research shows that health workers experience conditions that may cause stress at work and influence their ability to concentrate, sleep quality, and decision-making ability.
    Keywords: Stress Level; Human Resource; Hospital Information System; HRHIS.

  • Classification of Vertebral Fractures in CT Lumbar Vertebrae   Order a copy of this article
    by Adela Arpitha, Lalitha Rangarajan 
    Abstract: The existence of a vertebral fracture (VF) in particular compression fracture indicates osteoporosis and is a sole powerful predictor for the advancement of another osteoporotic fracture. With the number of imaging scans consistently expanding, identifying different cases and grades of osteoporotic fractures are missed by the over-burdened radiologist. The objective of this paper is to automatically segment and classify vertebral body fractures. Individual vertebral body is segmented by feeding preprocessed images to hybrid FCK-means algorithm. The shape features from the segmented output and texture features from the original input image are extracted and fed to an artificial neural network (ANN) which performs multiclass classification of vertebral body compression fractures and its associated fracture grades. Our method resulted in an overall classification accuracy of 93.14% based on Genants scoring for VF. The result concludes that with this approach, the clinicians task in diagnosing fractures is made simpler and also aids in suggesting for further treatment.
    Keywords: artificial neural network; ANN; FCKMEANS; vertebral body segmentation; vertebral body fracture classification; CT; shape features; texture features.
    DOI: 10.1504/IJMEI.2020.10029498
     
  • Hospitalization characteristics of Metabolic Syndrome patients   Order a copy of this article
    by Nimisha Patel, Riddhi Vyas, Shankar Srinivasan, Dinesh Mital 
    Abstract: Metabolic syndrome is a combination of disorders and in conjunction increases the risk of developing several chronic diseases. This study sought to determine the overall in hospitalization characteristics of metabolic syndrome and non-metabolic syndrome patients. This was a cross sectional study with descriptive analysis from Healthcare Cost and Utilization Project (HCUP) National Inpatient Sample (NIS) dataset from 2012 to 2014.Compared with Non-metabolic syndrome patients, metabolic syndrome patients length of stay was longer at mean 5.10 days versus mean 4.57 days for non-metabolic syndrome patients. Additionally, total in-hospital charges for metabolic syndrome patients was 30% higher than non-metabolic syndrome patients. Risk of developing metabolic syndrome in female was slightly elevated than in men. Having metabolic syndrome in white ethnic group was high and exhibited substantial differences among different ethnicity. Lower socioeconomic status patients were 37% more prevalent in having metabolic syndrome than the higher income patients.
    Keywords: Metabolic syndrome; Non-metabolic syndrome; Hospital cost; Length of stay.

  • Power Analysis of EEG Bands for Diagnosis of Alzheimer Disease   Order a copy of this article
    by Sachin Elgandelwar, Vinayak Bairagi 
    Abstract: Identifying the early and fundamental stage of Alzheimer Disease (AD) called as Mild Cognitive Impairment (MCI) is needed for better medical care. The basic goal of the current research is to evaluate the electroencephalography (EEG) for the diagnosis of AD and to separate the AD from the normal healthy subjects. The EEG signals has diverse frequency bands which reflects mental functions and memory performance of the humans. The EEG is non-invasive and measurable brain signal, which can be used for detecting the memory functions in the case of AD where there is significant slowdown of brain cognitive functions. The present study is based on analysis of power and frequency of EEG signals, which reflects the connection between specific EEG frequency bands and their relative power (RP). It is observed that relative power of few EEG signal bands is closely linked with the AD staging. Slowing of EEG signals is the main feature found in AD subjects. Such slowing down of EEG is increasing the relative power of delta and theta bands, along with the decreased in the power of alpha and beta bands of EEG. This paper shows the relative power analysis of each band in EEG signals to detect the severity of AD
    Keywords: Alzheimer Disease (AD); Mild Cognitive Impairment (MCI); Electroencephalography (EEG); Relative Power (RP); Bump Modelling; Frequency Bands.

  • Effect of two different bone cements in thermal necrosis when associated to titanium versus carbon nailing for bone metastases a numerical study   Order a copy of this article
    by V.C.C. Oliveira, Elza M. M. Fonseca, C.C. Rua, J. Belinha, P.A.G. Piloto, R.M. Natal Jorge 
    Abstract: The main objective is to study the thermal effect induced by different bone cements associated to intramedullary nails in titanium and carbon, in bone metastases treatment. The thermal necrosis effect of each cement polymerisation was verified to understand the role of such procedures. Numerical models with nailing systems, introduced in a cortical and spongy bone metastasis, were developed aiming to predict the temperature produced by different types and amount of cement polymerisation. The results showed that the polymerisation heat release in all models with a cement mantle filling in around the intramedullary nail and the necrosis largest area was predicted with CMW3. It was verified that CF/PEEK nail and high viscosity Palacos R reduce the heat transfer and the necrosis affected area. This effect could be an advantage for treatment, which aims to keep long-term stability and local metastatic disease control for functional improvement and pain relief.
    Keywords: bone cement; bone metastases; thermal necrosis; titanium nail; carbon nail; numerical model; thermal analysis; computational model; intramedullary nail; metastatic lesion.
    DOI: 10.1504/IJMEI.2020.10031345
     
  • Modified Fuzzy Clustering based Segmentation through Histogram Combined With K-NN Classification.   Order a copy of this article
    by Balan Thamaraichelvi 
    Abstract: Medical Image analysis plays a vital role in diagnosing the disease accurately in the medical field. Image segmentation is a challenging problem in the field of medical image analysis. In this paper, A modified gaussian kernelized additive bias field clustering based segmentation technique with un-supervised K-NN classification technique has been considered to analyse the Magnetic Resonance (MR) brain images for tissue segmentation and Tumor detection. The accuracy of the proposed segmentation and classification techniques is found to be around 95%. The accuracy and the statistical measures like selectivity and sensitivity are calculated using the fractions: True Negative (TN), True Positive (TP), False Negative (FN) and False Positive (FP).
    Keywords: Image segmentation; Histogram based centre initialization; Fuzzy C-Means (FCM); Gaussian Radial basis Kernel Function; Discrete Wavelet Transform (DWT); Principal Component Analysis (PCA); K-NN classification.

  • Analysis and Prediction of Breast Cancer through Feature Selection and Classification Techniques   Order a copy of this article
    by Sivasankar Elango, Sathish Kumar A, Sanjivi J, Balasubramanian P 
    Abstract: In this modern era, rapid research is being conducted in the field ofrnmedical sciences, with datasets of patients regarding their symptoms and their corresponding disease being readily available to the common man through the Internet. This paper aims to contribute to this boom in the field through the application of data mining and machine learning techniques.We have considered a dataset that has documented the appropriate symptoms of 699 patients and whether they have been diagnosed with breast cancer or not. The dimensions of the dataset were significantly reduced through feature selection techniques including both filter as well as wrapper based techniques. Various classification algorithms,rnwhich includes Naive Bayes, Support Vector Machines, Logistic Regression,rnDecision Tree and Boosting algorithms, were then applied and their accuracies were compared. Boosting algorithm provides the better accuracy compared with base classifiers.
    Keywords: Breast Cancer;Classification techniques; Machine Learning; Data Mining; Predictive Modeling.

  • Feature Subset Selection for Cancer Detection Using Various Rank-Based Algorithms   Order a copy of this article
    by B. Surendiran, P. Sreekanth, E. Sri Hari Keerthi, M. Praneetha, D. Swetha, N. Arulmurugaselvi 
    Abstract: Feature Selection in data mining is the process of identifying the profitable features that are more significant in giving accurate results. Feature selection approaches like Filter method, Wrapper method is used here to get the more significant attributes. These methods generate the list of highly important attributes by using various ranker algorithms like Correlation, Relief-F, Information Gain, Gini Index and classifiers like One R, Support Vector machine, Navy Bayes, Random Tree. In this, we are using ranker methods to perform feature selection on Breast Cancer Analysis. Various experiments have been carried out on Breast Cancer Coimbra data set using different classifiers to predict the accuracy. The crucial attributes are identified using feature selection methods, analysed for both balanced and unbalanced datasets and classified using OneR classifier.
    Keywords: Feature Selection; filter and wrapper methods; Breast Cancer ;Ranker Algorithm; balanced dataset.

  • Diagnosing Angiographic Disease Status with the Aid of Deep Neural Network   Order a copy of this article
    by Jayakumari Damarla 
    Abstract: In this decade, one-third of all global deaths reason as cardiovascular diseases- a report from the World Health Organization (WHO). Early diagnosing conserves human lives from cardiovascular diseases, which is possible through computational techniques. This research intends to identify normal/abnormal conditions of heart diseases appropriately with the aid of the Artificial Intelligence (AI) technique. This research includes Deep Neural Network (DNN) to identify heart conditions adequately. It is evident from the investigation that DNN unveils 93.4% accuracy, which is proficient performance over other employed techniques. The performance of the research evaluates through nine-measures, where the DNN shows the superiority over contest techniques in all performance measures while predicting heart disease conditions.
    Keywords: Artificial Intelligence (AI); Deep Neural Network (DNN); Angiographic Disease and Prediction/Classification/Diagnosing.

  • Implementation of non-contact bed embedded Ballistocardiogram (BCG) signal measurement and valvular disease detection from this BCG signal   Order a copy of this article
    by M.A. HAFIZ, Abdullah Mahammed Hashem, Ainul Anam Shahjamal Khan, Md. Hossainur Rashid, Md. Azad Kabir Faruqui 
    Abstract: Electrocardiogram (ECG) is the most common practice to diagnose cardiac abnormalities. In a traditional system, some ECG leads are connected to the patients chest to detect the electrical performance of the heart. For long term observation, this method creates discomfort for the patient. Non-contact measurement of cardiac performance can alleviate this discomfort. As BCG and valvular diseases both are mechanical phenomena, we conjectured that valvular disease could be diagnosed from non-contact BCG measurement. In this paper, we proposed a non-contact way to determine the valvular diseases of the heart which is favorable for long term observation of the patient. The ballistic force of heart was sensed using a series-connected array of piezoelectric elements embedded in the bed. We collected data from two local famous hospitals. We classified the data using Artificial Neural Network (ANN) and Support Vector Machine (SVM). We collected data from normal persons and persons affected by Mitral and Pulmonary Valve Stenosis. After analyzing the data, we nearly predicted the conditions of the persons. We compared the result using overall accuracy, misclassification rate and fitness. We collected 80 data of normal and valvular disease affected patients. We got the highest test accuracy of 79.12% for SVM technique for decomposition level 1. As this technique is completely new and advantageous, it can lead to a new research area of valvular disease detection.
    Keywords: non-contact; ballistocardiogram; electrocardiogram; valvular disease; artificial neural network; supporting vector machine.

  • Controlled magnetic field influence for reperfusion in aortic blood flow using a unified solution approach   Order a copy of this article
    by Ebenezer Ige 
    Abstract: The haemoglobin content of the blood contains iron constituent which makes body fluid a transport medium suitable for magnetic field-based therapeutic interventions and diagnostic applications. However, in cases of aortic dissection (AD), disturbances occasioned by the changes in cross-section affects the distribution of hematocrit (HTC) in the blood flow suggesting ruptured AD and this could result in ischemic insult and could be determined by the magnitude and direction of interruption of blood flow leading to reperfusion. This condition may affect considerably the allosteric-property of blood flow because of oxygenation sensitivity (OS) impairs imaging procedure in magnetic field-based interventions. In this study, we utilized the Einstein viscosity model to formulate a unified solution coupling wall deformation of AD effect, blood flow and magnetic field in a unified equation. The simulation was undertaken for varying HTC from 60% to 80 % for selected controlled values of magnetic flux; we observed pressure distribution in the region of AD showed rapidly increasing momentum and haemodynamic instability. It could be inferred that the contribution of the local magnetic field is directed to the relaxation of the muscles in the region of aneurysm while maintaining the blood flow at uniform distribution. The appreciation of scaled controlled magnetic effects demonstrated in this work could be applied to the management of critical cardiovascular issues such as necrosis and sepsis in a magnetic field environment.
    Keywords: Allostery; magnetic therapy; modeling; unified solution technique; aortic dissection.

  • Microfluidics Dielectrophoresis Device for Potential Cancer Cell Detection and Separation   Order a copy of this article
    by Nur Fatien Najwa Mohamad Narji, Mohd Ridzuan Ahmad 
    Abstract: Cancer is a leading cause of death that gives a negative impact on all ages and genders worldwide. There are a variety of methods to detect this disease such as CT scanning and Mammography. Even though the current methods have many advantages, however, most of the methods share similar disadvantages such as the detection result takes a long period. Sometimes, the results are not accurate, which can cause overdiagnosis or vice versa. Dielectrophoresis (DEP) is a label-free method, which can be used to obtain the parameters of cell electrical properties such as capacitance, conductivity, and permittivity of the cancer cells. rnIn this study, a device was designed with a pair of electrodes and the main channel with two inlets and two outlets. COMSOL software was adopted to study the flow of the particles in the channel. After that, the COMSOL software was used to run the simulation of the cell properties. The results presented two findings, i.e. the optimal design and dimension of the microfluidic device and cell sorting application. The simulations reveal that the particles were successfully captured by the electrodes and sorted within a specific time. The probability of cell capture and the ability of the electrodes to sort out the cells is about 80%. As for the potential application, DEP can be used as a non- invasive technique to separate the normal cells and cancerous cells, which can lead to early detection as it gives a real-time notification.rn
    Keywords: Microfluidic; Simulation; Cell separation; Dielectrophorosis; Cancerous cell.

  • EFFICIENT TUMOUR DETECTION FROM BRAIN MR IMAGE WITH MORPHOLOGICAL PROCESSING AND CLASSIFICATION USING UNIFIED ALGORITHM   Order a copy of this article
    by G. Sethuram Rao, D. Vydeki 
    Abstract: Brain diseases caused due to malignant are the biggest concern among all the age groups. Studies show that almost 80% of death cases are reported due to presence of malignant tumour. Hence diagnosing brain tumour at an early stage would increase the survival rate. Magnetic resonance imaging (MRI) plays a major role in diagnosing tumours in human brain. However, it is considered to be a time consuming and tedious process which could lead to deviation in the opinion of radiologists. This has led to the development of computer-based automatic extraction of tumour cells from the images obtained by MRI. This paper proposes an efficient tumour detection mechanism from MR images using morphological processing and unified algorithm. A neural network that uses bounding boxes and associated class probabilities detects the packets of tumour that exist in a full MR image. Simulated results of the proposed technique on the BRATS 2016 dataset show that a detection accuracy of 95.97% is achieved, while reducing the likelihood of false positives. This approach is compared with other detection methods such as DPM and R-CNN and the analysis proves that our method proposed outclasses the other detection methods.
    Keywords: terms-magnetic resonance image; brain tumour; thresholding; histogram; segmentation; CLAHE; unified detection; malignant; benign.
    DOI: 10.1504/IJMEI.2020.10030146
     
  • PILOT STUDY OF THz METAMATERIAL BASED BIOSENSOR FOR PHARMACOGENETIC SCREENING   Order a copy of this article
    by Samla Gauri 
    Abstract: Introduction: Empirical treatment provided by the clinicians before the pharmacogenomics; study known to be a major reason for morbidity and further severe consequences of adverse; drug reaction. The absence of impeccable information and primary applicable medication; induce the mortality rate associated with particular disease rather than minimize disease, risk,; and complication.; Materials and methods: The introduction of THz metamaterial biosensor to trace biomarker; that induce adverse drug reaction is an ideal thought to overcome drug hypersensitivity; reaction. The biosensor is mainly used to pharmacogenetic screening to study cell behaviour; towards prescribed dosage of drugs. The THz metamaterial biosensor designed in COMSOL; multiphysics based on resonance vibrational frequency and dielectric material property of the; biomarkers.; Conclusion: The difference in resonance frequency of normal cells and biomarkers is used to; trace targeted biomarkers. The THz metamaterial biosensor has great potential as portable; healthcare device for rapid and accurate biomarker analysis as well as diagnosis.
    Keywords: Metamaterial biosensor; pharmacogenomics; simulation; COMSOL multiphysics.

  • Frequency Domain Analysis of Gray Level Intensities for Extraction of Optic Disc in Retinal Images   Order a copy of this article
    by Sangita Bharkad 
    Abstract: Revealing and extraction of Optic Disc (OD) in fundus images is the most important step in automatic screening system of diabetic retinopathy. The algorithm presented in this paper is focused on revealing and extraction of Optic Disc (OD) in fundus images. This algorithm adopts frequency domain approach to focus the OD and mathematical morphology for extraction of the OD. Large pathological signs, bright lesions limit the OD segmentation performance as brightness of both OD and bright lesions is similar. Bright lesions are extracted before localization of the OD using DFT and morphological dilation is used for segmentation of the OD. This method was assessed on standard databases namely: DRIVE, DIARETDB1 and DIARETDB0. This algorithm acceptably recognizes the OD in 255 out of 259 retinal images (98.45%) in 0.75 seconds. 78.986.65 % and 99.3799.58% are the OD segmentation sensitivity and specificity achieved on these three databases. The proposed method demonstrates acceptable robustness on normal and pathological signs retinal images. Focused experimental results reveals the superior performance of presented work with respect to the methods demonstrated in literature.
    Keywords: Retinal Image; Optic Disc; DFT; Morphology; Dilation; Segmentation.

  • Adaptive Neuro-fuzzy based Attention Deficit/Hyperactivity Disorder Diagnostic System   Order a copy of this article
    by ANOOP KUMAR SINGH, Deepti Kakkar, Tanu Wadhera, Rajneesh Rani 
    Abstract: The main purpose of this research paper is to develop a simple automated system for the accurate diagnosis of Attention Deficit/Hyperactivity Disorder (ADHD) using the Adaptive Neuro-Fuzzy Inference System (ANFIS). The designed diagnostic system has two stages- primary and secondary. In the primary stage, a hierarchical fuzzy-based short version of the gold diagnostic tool Connors scale has been implemented to evaluate the behavioral aspects in a fast and simple manner. The secondary stage targets the two main abilities of brain functionality- attention and perception. The determining traits were extracted from ERP components, especially the P300 wave, using peak amplitude and average latency rate. The proposed secondary diagnostic stage is based on Takagi-Sugeno fuzzy inference system and it integrates the features of both artificial neural network and fuzzy logic into a single framework. The system accuracy is 99.3% in classification, i.e., ADHD vs. Normal and 88.78% in severity level (Normal/Low, Medium and High) of ADHD. Thus, the proposed model provides an adaptive and better alternative to ADHD diagnosis.
    Keywords: ADHD; Artificial neural network; Fuzzy logic; Backpropagation; ANFIS; Neuro-fuzzy inference system; Event-related potential; FIS; Standalone fuzzy inference system.

  • MODELING AND ANALYSIS OF KNEE AND HIP JOINTS IN HUMAN BEING   Order a copy of this article
    by Bhaskar Kumar Madeti 
    Abstract: ABSTRACT: The present work aims at developing a representation of all the forces by first drawing the free body diagrams of the knee and hip joints. In order to do force analysis one needs to study knee and hip anatomy. With the aid of MRI Scan data, the moments of the forces are computed so as to solve the equilibrium equations. A 3-dimensional (3-D) finite element analysis is generated to represent the real world situation as closely as possible. The accuracy is improved using image processing commercial software on Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) scans. The analysis was conducted for body weights of 600 N, 1000 N and 1500 N for each of the possible postures during various activities. One important recommendation that can be made from present work is that in order to find proper replacement of human knee and hip joint, one needs to collect CT scan slices and then create 3D models performing F.E analysis by selecting the persons weight. In other words the selected implant must be customized for the patients weight, rather than making the choice by rule of thumb as in common practice in hospitals today.
    Keywords: Keywords: CT scan; MRI Scan; 3D model; FE analysis; Knee; Hip.

  • STUDY OF DEMOGRAPHIC AND RISK FACTORS ASSOCIATED WITH LIVER DISEASES   Order a copy of this article
    by Disha Sheth (Kothari), Riddhi Vyas, Shankar Srinivasan 
    Abstract: ABSTRACT:Liver diseases can be diagnosed by interpreting enzyme abnormality pattern and patient characteristics. Despite growing evidence suggesting different causes, there is a need to explore the risk factors which lead to liver diseases in different population. NHANES Data (2015-2016) was investigated for gender, age, race and country of birth in patients with high liver enzymes values. Different elements were also studied for significant liver disease risk based on odds ratio, 95% confidence interval and relative risk using Fisher Exact Test. Results showed US-born, Non-Hispanic white young males had high values for liver enzymes, demonstrating greater risk in such population for liver diseases. Odds ratio (<1.0); P-value of significance (<0.0001) indicated negligible risk associated with all elements - iron overload, diabetes, smoking, alcohol, blood pressure, total cholesterol, obesity, total protein, albumin and total calcium. Validation studies were also performed using NHANES data (2013-2014), authenticating the results obtained.
    Keywords: Liver Diseases; Demographic; Odds Ratio; Relative Risk; Fisher Exact Test.

  • A novel UWB compact elliptical-patch antenna for early detection of breast cancer in women with high mammographic density   Order a copy of this article
    by Amber Khan, Mainuddin , Moin Uddin, Parikshit Vasisht 
    Abstract: Microwave imaging is one of the emerging technologies for early detection of breast cancer among women having dense mammographic densities. One of the critical and valuable components of an accurate, effective and compact, involving minimum risk microwave imaging system for early breast cancer detection is an ultra wideband (UWB) antenna. A novel, compact elliptical UWB microwave antenna is presented in this research article that might be suitable for early breast cancer detection. The simulation of antenna structure is carried out using HFSS13 FEM-based EM software. The simulation results yield better UWB response. The antenna structure provides a wide practical fractional bandwidth of more than 156%. A significant performance factor of the proposed antenna is its ability to provide sufficient gain level for short distance communication. Thus, the proposed antenna is a strong candidate for design and development of microwave imaging system for early detection of breast cancer among women with dense mammographic densities.
    Keywords: ultra wideband; UWB; wireless body area network; WBAN; elliptical-patch; quality of service; QoS; UWB sensors; breast cancer.
    DOI: 10.1504/IJMEI.2020.10033528
     
  • Diagnosing Lung Cancer with the aid of BPN in associate with AFSO-EA   Order a copy of this article
    by Rahul Shreyas, Gopika Kumari 
    Abstract: This work aims at identifying lung cancer into various classes of carcinomas or as a normal-lung, with the aid of an artificial neural network classifier. One thousand input attributes obtained from multiple modality images of the lung, and four output classes are defined. Existing works in the area choose to maximize the accuracy of classification as the primary goal of their researches. However, the reduction of the process complexity has been a relatively untouched area. Few of the available works have tried out the possibilities of reducing the number of input features. This work aims at modeling an optimum Back Propagation Network (BPN) model, by reducing the input feature count and by optimizing the number of neurons in each layer of the BPN classifier without compromising the accuracy. This work incorporates Artificial Fish Swarm Optimization (AFSO) and Evolutionary Algorithm (EA) and proposes a hybrid AFSO-EA for reducing the input feature set. This work also configures a BPN model, where the number of neurons in each hidden layer is optimized using the same hybrid method. The investigation results reveal that the proposed hybrid AFSO-EA technique generates a BPN model, which can achieve 97.5% classification accuracy, with much less computational overhead, than the existing methods.
    Keywords: Lung cancer; Backpropagation network (BPN); Levenberg-Marquardt (LM); Artificial Fish Swarm Optimization (AFSO); Evolutionary Algorithm (EA) and hybrid Artificial Fish Swarm Optimization - Evolutionary Algorithm (AFSO-EA).

  • Operating room scheduling 2019 survey   Order a copy of this article
    by Maha TOUB, Omar SOUISSI, Said ACHCHAB 
    Abstract: Numerous optimization problems in Healthcare have been approachedrnby researchers over the last three to four decades. Hospital logistics - organized and structured to secure patient satisfaction in terms of quality, quantity, time, security and least cost - forms part of the quest for global performance. We provide herein a review of recent study and applications of Operations Research in Healthcare. In particular, we survey work on optimization problems, focusing on the planning and scheduling of operating rooms. The latter is a highly strategic place within the hospital as it requires key medical competence and according to related works surgical sector expenditure represents nearly a third of a hospitalsrnbudget. We analyze recent research on operating room planning and schedulingrnfrom 2008 to 2019; our evaluation is based on patient characteristics, performance measurement, the solution techniques used in the research and the applicability of the research to real life cases. The searches were based on Pubmed, Web of science, sciencedirect and google scholar databases.
    Keywords: Operation Research; Healthcare; Operating room; Scheduling;rnPlanning; Optimization; Surgery scheduling; Literature review.

  • Detection of Abnormality in Breast Thermograms using Canny edge detection algorithm for Thermography Images   Order a copy of this article
    by Kumod Gupta, Ritu Vijay, Pallavi Pahadiya 
    Abstract: Currently research towards cancer is gaining fast attention, as methods to cure cancer are a holy grail. Among many potential techniques, breast cancer thermography techniques may come up in saving many lives in the future. The purpose of this paper is to diagnose breast cancer at preliminary stage using infrared breast thermography. In the first approach, the thermography image is acquired and conclusions are drawn on the basis of their symmetry using the histogram, is not appropriate to take decision for practitioner. In the second approach image is processed and apply algorithms to get good result. Further, it also helps us to explore those statistical features that effectively distinguish healthy breast thermograms from that of the thermograms caused by a disease. Finally, graphical representation of the data corresponding to statistical features for both the left and right breast of the Healthy and sick Patients breast thermogram has been made in this paper. The mammography report is carefully examined and compared to signify any abnormality. The values obtained from asymmetric analysis based on the abnormality detection system are 94.44% of Sensitivity, 83.33% of Specificity and 88.88% accuracy. This presented work is fruitful for the medical practitioner in early detect breast cancer.
    Keywords: Infrared Radiation thermograms (IRT); Mammography Images; Feature Extraction; Malignant; Benign; Region of interest (ROI);.

  • An automatic ECG arrhythmia diagnosis system using Support Vector Machines optimized with GOA and entropy-based feature selection procedure   Order a copy of this article
    by Abdullah Jafari Chashmi, Mehdi Chehel Amirani 
    Abstract: Primary recognition of heart diseases by exploiting computer-aided diagnosis (CAD) machines, decreases the vast rate of fatality among cardiac patients. Recognition of heart abnormalities is a staggering task because the low changes in ECG signals may not be exactly specified with eyesight. In this paper, an efficient combination classification model using Grasshopper Optimization Algorithm (GOA) and support vector machines (SVMs) called GOA-SVM for ECG arrhythmia diagnosis is proposed. In this approach, the combination of Discrete wavelet transform and higher-order statistics is used to feature extraction and the entropy-based feature selection method. The proposed method has been compared with PSO-SVMs and SVM-RBF kernel function for classifying the five classes of heartbeat categories. Our proposed system is able to classify the arrhythmia classes with high accuracy (99.66%). The simulation results show that classification accuracy in SVM-GOA method is better than SVM-RBF and Neural Network classifier.
    Keywords: ECG classification; entropy; Grasshopper Optimization Algorithm; higher order statistics.

  • Protection of Encrypted Medical Image using Consent based Access Control   Order a copy of this article
    by Mancy Lovidhas, Maria Celestin Vigila S 
    Abstract: An outline which defends tolerant details during facts transfer be necessary for medical management systems. On the way to attain safety and confidentiality for facts transfer, a consent based access control system was proposed. It grants the agreement by distributing token to the data client, where the permission can only be created by official client. Thus the information stored inside the data centre can be accessed only when the data requester has the token, which is similar to the token already present inside the data centre. If the confirmation of data centre is valid, the data requester can access the original information of the user. Eventually, the user will be notified by the data centre to deserve that there is no misuse outside consent. The anticipated consent based access control method is compared with existing methods to achieve less time utilization and low computational overhead.
    Keywords: Consent ; Authorization ; Data Requester ; Data Center ; Data Provider.

  • An Innovative Hearing-Impaired Assistant with Sound Localization and Speech to Text Application   Order a copy of this article
    by Balaganesh Baskar, B.V. Damodar, R. Dharmesh, K.R. Tharunkarthik, K.V. Shriram 
    Abstract: According to the statistics of World Health Organization (WHO), there are about 466 Million people (About 5% of the total population worldwide) are hearing impaired and 34 million of them are children. It is estimated that by the 2050, there will be almost 900 Million people suffering from hearing disability. In India, there are 63 Million people with hearing impairment. Hearing aid prices range from ?20,000 for a basic device to ?2,50,000 for a premium hearing aid. People with hearing disabilities should not have to spend so much money to enable a sense that normal people take for granted. One of the main problems faced by a deaf person is that they find it difficult to have casual conversations because it is hard for them to follow what others are speaking. This can be addressed simply using a mobile application. We present a frugal and affordable system that could show the direction of the speaker along with the speech in text format in real-time. This can be achieved by Sound-Localization and Speech-to-Text conversion. Sound-Localization is a technique used to identify the direction of the source of the sound. There are Speech-to-Text tools that can generate text from a speech in real-time.
    Keywords: Sound Localization; Android Application; Simple Conversation Application; Speech to Text.

  • An efficient AR modeling based Electrocardiogram signal analysis for Health Informatics   Order a copy of this article
    by VARUN GUPTA 
    Abstract: Today health informatics not only require correct, but also timely diagnosis much before the occurrence of critical stage of the underlying disease. Electrocardiogram (ECG) is one such non-invasive diagnostic tool to establish an efficient computer-aided diagnosis (CAD) system. In this paper, autoregressive (AR) modeling is proposed that is an efficient technique to process ECG signals by estimating its coefficients. In this paper, two parameters viz. Atrial Tachycardia (AT), and Premature Atrial Contractions (PAC) are considered for evaluating the performance of the proposed methodology for a total of 17 recordings (6 real time and 11 from MIT-BIH arrhythmia database). As compared to K-Nearest Neighbor (KNN) and Principal Component Analysis (PCA) with AR modeling [ also known as Yule-Walker (YW) and Burg method], KNN classifier coupled with Burg method (i.e. Burg+KNN) yielded good results at model order 9. A sensitivity (S_e) of 99.95%, specificity(Sp or PPV) of 99.97%, detection error rate (DER) of 0.071%, accuracy(Acc) of 99.93% and mean time discrepancy (MTD) of 0.557 msec are obtained. Consistent higher values of all the performance parameters can lead to the development of an autonomous CAD tool for timely detection of heart diseases as required in health informatics.
    Keywords: ECG; AR coefficients; Atrial Tachycardia; Premature Atrial Contractions; KNN classifier; PCA classifier; Yule-Walker; Burg method.

  • A Supervised Learning Model for Medical Appointments No-Show Management   Order a copy of this article
    by Ines Ferreira, André Vasconcelos 
    Abstract: A no-show is a phenomenon that leads to an efficiency decrease in various sectors, including in the health care sector. This research proposes the usage of supervised learning techniques to predict medical appointments no-shows occurrence and to find patient replacements to fulfil last-minute vacancy slots. The prediction is performed using a classification algorithm that computes the probability of no-show for each patient based on features that have shown to influence his or her decision, such as the waiting time, the day of the appointment and the number of previous no-shows, among others. The features are extracted from two distinct healthcare datasets. To reduce the occurrence of no-shows, the system sends reminders and then, the prediction of no-show is performed days before each appointment, so that there is still time to find a replacement, if necessary. In order to select the most suitable classification algorithm, a 10-fold cross validation is used to perform a comparative analysis among the most used algorithms applicable to this type of classification problems, namely Logistic Regression, k-Nearest Neighbors, Random Forests and Gradient Boosting. This research uses four metrics to assess the algorithms performance, including accuracy, precision, recall and f1-score. The Gradient Boosting algorithm proved to have the best performance in estimating no-shows.
    Keywords: No-show; Health Care; Supervised Learning; Classification Algorithms; Cross Validation.

  • Sentiment Analysis of an Epidemic: A case of Nipah Virus in India   Order a copy of this article
    by Jayan V, Sreejith Alathur, Rajesh R. Pai 
    Abstract: Data in social media and other news media can have an impact on the decision-making process of the Government and the citizen if properly examined. The mode and pace of dissemination in both media leads to an increase in the delivery of misinformation. This affects the economy of the country and people's mental health. The government must formulate the required measures to counter the proliferation of fake messages and disinformation in the media, which would otherwise lead to an unnecessary burden. Regulation of health communication during the period of epidemic is important, as it has an effect on the mental health of users of the media. The study assesses the emotions of health communication in social media and online news media in the context of the Nipah Epidemic in India during 2018.
    Keywords: Fake News; Nipah; Sentiment Analysis; Social media; psycho-linguistics; neuro-linguistics; misinformation; depression; anxiety.

  • Hierarchical cluster analysis of the morbidity and mortality of COVID-19 across 206 countries, territories and areas   Order a copy of this article
    by Donald Douglas Atsa'am, Ruth Wario 
    Abstract: This research deployed the agglomerative hierarchical clustering to extract clusters from the coronavirus disease 2019 (COVID-19) data based on the morbidity and mortality of the novel virus across 206 countries, territories and areas. As of 2 April, 2020, a total of 896,475 confirmed cases were reported across the world. Three clusters were extracted from the data on the bases of morbidity and mortality of COVID-19. These include: low-confirmed-cases, low-new-cases, low-deaths and low-new-deaths countries [cluster 1]; medium-confirmed-cases, low-new-cases, medium-deaths, and medium-new-deaths countries [cluster 2]; high-confirmed-cases, high-newcases, high-deaths, and high-new-deaths countries [cluster 3]. It is recommended that, to contain the pandemic, countries within a cluster should cooperate, share information and learn from mistakes or strategies (as the case may be) of the countries in other clusters. Among other benefits, this can prevent countries within the low-confirmed-cases cluster from progressing to the high-confirmed-cases cluste
    Keywords: COVID-19; morbidity; mortality; hierarchical clustering; data mining.
    DOI: 10.1504/IJMEI.2020.10033328
     
  • A new approach based on for controlling the joint movement of drop foot patients   Order a copy of this article
    by Mina Lagzian, S. Ehsan Razavi, Hamid Reza Kobravi 
    Abstract: Stepping is one of significant functions, which needs an appropriate coordination between various joints to be accomplished properly. Drop foot is a gait abnormality that the harmony between joints is disturbed. In this paper, proposed a new fuzzy control model for controlling joint movement of drop foot patients. This method has two advantages over pervious ones. The first one is based on identify kinematic pattern not just statistical works. The second is independent of any mathematical models and formulas. The controlling method is based on identification of both stable and unstable manifolds of basin attraction of a healthy person in order to, how to properly move his/her defective leg. The results indicate that using the proposed fuzzy controlling approach, has lower computations and good convergence.
    Keywords: stepping procedure; drop foot; gate analysis; stable and unstable manifolds; absorption platform; saddle points; fuzzy control.
    DOI: 10.1504/IJMEI.2020.10030959
     
  • A secure and intelligent real-time health monitoring system for remote cardiac patients   Order a copy of this article
    by Maroua Ahmid, Okba Kazar, Laid Kahloul 
    Abstract: In this paper, we propose an intelligent and secure internet of things approach for the healthcare system that monitors the patient heart rate in real-time and from any place. Thanks to the agent, the proposed system can predict the critical condition before it even happens and takes fast and apt decisions in an emergency case. Based on the experimentation, the proposed system is convenient, reliable, and ensures data security at a low cost. The proposed algorithm outperforms other algorithms regarding the systems operational efficiency. It is more suitable for devices with power, storage, and processing limitations, such as in IoT devices. Also, agents are the better current technologies for heterogeneous and distributed systems, such as the internet of things. Moreover, this approach scalability makes it suitable for a broad range of IoT environments, including smart homes, smart cities, dynamic and large-area networks, etc.
    Keywords: healthcare; agent; ECC EIGamal; remote monitoring; cloud; internet of things; IoT.
    DOI: 10.1504/IJMEI.2020.10033833
     
  • Virtual Reality-Based Real-Time Solution for Children with Learning Disabilities and Slow Learners An Innovative Attempt.   Order a copy of this article
    by K.V. Shriram, Pranav B, Saravanan G, Merin K. John, Athira Sasidharan 
    Abstract: Autism Spectrum Disorder (ASD) is a developmental disorder which can be characterized by social and communication impairments, slow learning, combined with limited interests and repetitive behaviors. It affects as many as one in 59 children and is more prevalent in boys with one in 38 diagnosed with Autism Spectrum Disorder. But due to the social stigma associated with mental health and psychological issues, especially in countries like India, most cases go unreported or symptoms ignored. This project is an attempt to help address this issue by providing a means to assist in diagnosing ASD using telemedicine and also to provide an interactive and effective means of learning for children diagnosed with ASD or children with slight learning disabilities. The system features games that have been proven to be effective with children diagnosed with ASD. The virtual reality which is being speculated to be a powerful tool in helping children with learning difficulties has been used to enhance the effectiveness of these games. The concept of dynamic difficulty is also integrated into the game in order to increase or decrease the challenge of each level depending on the performance of the child which further increases the effectiveness of the game.
    Keywords: Autism; Slow Learners; Learning Difficulties; 3D; game; Virtual Reality; Hand Tracking; Interactive; Dynamic difficulty; Adaptive levels; Gesture detection; Leap Motion sensor;.

  • An Innovative Deep Learning Approach for COVID 19 Detection with X-Ray Images and Infected User tracking through Blockchain   Order a copy of this article
    by Vimal Kumar, Shriram K Vasudevan, Nitin Dantu 
    Abstract: The COVID-19 pandemic has shocked the globe with an enormous number of people infected and a large death toll across several nations. Many people lost their loved ones and 350,000 death toll passed globally. By this time more than five million people have been affected. A deadly virus has many victims but no country could stand out when it comes to producing a vaccine. The virus is so dangerous that it spreads rapidly through human contact and a person who is infected will infect around 600 people a month. It is so fast that more than 50,000 people are affected in one day in some countries and more than 1,000 people die in one day. The present situation is so bleak, and if not contained by social distance, it can get even worse. There are many patients but not enough doctors and hospitals to treat them as the infection grows exponentially. No doctor can examine Chest X-ray in thousands and have fast turnaround. We want to create a solution to reduce the workload on doctors, to easily determine whether a Chest X-ray pneumonia is due to coronavirus or not, so that the rapid spread can be controlled and proper cure could be given to patients. Here we also add the distributed ledger technology called blockchain, which helps in monitoring the patient health data and thus it helps in having the complete history of the patient.
    Keywords: Covid 19; Covid 19 with Deep Learning; Deep Learning; Blockchain for Covid 19; Covid 19 with XRAY;.

  • Analysis of Dermal Activity and Skin Images for Diabetic Kidney Disease   Order a copy of this article
    by Valli MN, Sudha Singaram, Kalpana Ramakrishnan, Soundararajan Periasamy 
    Abstract: Any electrical input to skin, changes the ion concentration in sweat, leading to variations in electro dermal activity (EDA) and hence in skin conductivity. Structurally, the pores and connecting tissues contribute to skin texture. Diabetes leads to micro-vascular complications thus affecting the innervations of C-nerve fibers, thereby skin conductivity and micro texture also changes. Diabetic kidney disease (DKD) is another condition under which hydration level and urea in serum and sweat varies leading to dermal changes. Therefore EDA and microscopic-images are acquired from volunteers catering to normal, diabetic and DKD. Features are extracted after convolving EDA signals with Morlet-wavelet and pre-processing the micro texture image for hair removal and enhancement. An expert system is designed to take these features as input and for broad classification. Result of this study demonstrates the influence of serum urea on skin conductivity and texture, thereby enabling skin based method of diagnosing diabetics and DKD.
    Keywords: Electro dermal activity; kidney; feature extraction; artificial neural network.

  • APPROACHES AND CHALLENGES TO SECURE HEALTH DATA   Order a copy of this article
    by Patricia Whitley, Hossain Shahriar, Sweta Sneha 
    Abstract: As the volume of health data being generated and stored massively, the number of data breaches are also increasing causing concerns among patients and healthcare providers on how to protect data better. This article explores blockchain, machine learning and artificial intelligence as possible technologies to secure healthcare data and some challenges when incorporating them to mitigate against data breaches. The paper also discusses a discussion of the issues surrounding the security of health data and improvement.
    Keywords: EHR; Data Security; Blockchain; Machine Learning; Artificial Intelligence.

  • Impact of wireless technologies on public health: a literature review   Order a copy of this article
    by Antonio Conduce, Daniela Di Sciacca, Sergio Sbrenni 
    Abstract: Introduction: The aim of this review is to evaluate the impact wireless technologies have on the public health in terms of patient safety, quality of care and cost savings. Methods: A systematic review was performed. We ended up analysing 76 papers and found the main applications of wireless technologies on public health in the literature. Results were organized in four different categories, one being a subsequent refinement of the previous one. Results: This study identify and analyses the risks and benefits on public health, highlighting strengths and opportunities, especially for patients in prehospital stage. The most relevant benefits identified are: improving outcomes in time-dependent pathologies and reducing management costs. Conclusion: The adoption of wireless technologies in healthcare is still in a trial stage. A careful evaluation of their impact on the quality and sustainability of health services has to be performed in order to obtain the final approval.
    Keywords: Emergency Medicine; Ambulances; Quality of Care; Wireless technology; Equipment and Supplies; Telemedicine; Technology Assessment; Biomedical; Electronic Health Records; Review.

  • THE EFFECT OF SOCIOECONOMIC FACTORS ON HEALTH-RELATED QUALITY OF LIFE AMONG ADULTS WITH DEPRESSIVE DISORDER IN THE UNITED STATES   Order a copy of this article
    by Nesren Farhah, Shankar Srinivasan, Dinesh Mital, Frederick Coffman 
    Abstract: Using data from the Behavioral Risk Factor Surveillance System (BRFSS) a study was conducted to determine the effect of socioeconomic factors of education level, marital status, employment status, and income level on the HRQOL outcomes of activity limitation, physical health, and mental health among adults with depressive disorder in the United States. A greater number of adults with high income level, high education level and married were depression free compared to those with low incomes (39.17% vs 6.49%), low education level (30.46% vs 5.8%), and being single (45.35% vs 8.35%). Also, those with depressive disorder suffered greater physical health problems (11.02% vs 7.93%) and mental health problems (12.58% vs 6.26%).
    Keywords: Depressive disorder; socioeconomic factors; Health-related quality of life; mental health; physical health; activity limitation.

  • MSCs-released TGF?1generate CD4+CD25+Foxp3+ expression in T-reg cells of Human SLE PBMC   Order a copy of this article
    by Dewi Masyithah Darlan, Delfitri Munir, Agung Putra, Nelva Karmila Jusuf 
    Abstract: Regulatory T-cell (Treg) defects may cause autoreactivity of both T and B cells leading to autoimmune disease, including in Systemic lupus erythematosus (SLE) disease. Those defects were characterized by decreased expression of CD4, CD25, and FoxP3, thus restoring the Treg expression can reverse autoimmunity into immune tolerance into a normal immune response. Mesenchymal stem cells (MSCs) have immunomodulatory properties to control inflammation milieu, including in SLE inflammation by releasing TGF?1, IL-10, and PGE2, thus MSCs can generate Treg cells. However, the regulation of Treg by MSCs-released TGF?1 in human SLE remains unclear. This study aims to analyze the role of MSCs-released TGF?1 in generating CD4+, CD25+, Foxp3+expression in T-reg cells of human SLE PMBCs. This study used a post-test control group design using the co-culture of PBMCs from SLE patient and human umbilical cord MSCs (hUC-MSC) as the subject. This study was divided into 5 groups; sham, control, and treatment group treated by co-cultured hUC-MSC to PBMCs with ratio 1:1 (T1), 1:25 (T2), and 1:50 (T3) for 72 hours incubation, respectively. The expression of T-reg was assessed by flow cytometry assay, whereas the TGF?1 using Cytometric Bead Array (CBA).This study showed a significant increase in Treg cell expression (P
    Keywords: MSCs; TGF?; CD4+CD25+Foxp3+; T-reg; SLE disease.

  • An Ensemble Framework-Stacking and Feature Selection Technique for Detection of Breast Cancer   Order a copy of this article
    by Vikas Chaurasia, Saurabh Pal 
    Abstract: Breast cancer is the second most common cancer in women worldwide. The machine learning (ML) method is a modern and accurate technique that researchers have recently applied to predict and diagnose breast cancer. In this research article, we developed stack-based ensemble techniques and feature selection methods for the comprehensive performance of the algorithm and comparative analysis of breast cancer datasets with reduced attributes and all attributes. This article uses five-feature selection technique because it affects the overall performance of the model. After applying feature selection method, now we have data set with reduced features as well as all features. We implemented logistic regression on a dataset with all features and a dataset with reduced features. Finally we see that the dataset with reduced features have got improved accuracy.
    Keywords: Breast Cancer; KNN; Perceptron; Stacking; Machine Learning; Feature selection; Algorithm; Ensemble techniques; Logistic regression; Sub models.

  • DEPRESSION CLASSIFICATION AND RECOGNITION BY GRAPH-BASED FEATURES OF EEG SIGNALS   Order a copy of this article
    by Ahad Mokhtarpour, Faezeh Bashiri 
    Abstract: Major depressive disorder(MDD) is one of the main subjects in world health so its diagnosis is important for researchers. Electroencephalography(EEG) is one of effective tools in brain psychological disorders diagnosis which any change in brain function is reflected in signals. By EEG signal analyzing, some disorders like MDD can be recognized. In this paper EEG signals are firstly mapped to four different visibility graphs and several features are extracted from each graphs. Then feature numbers are reduced by principal component analysis(PCA) and depressive and normal classification is done by support vector machine(SVM). In this paper, classification results by combining all four graph features are compared with each graph features individually and the results show that by combining features lower classification error and better accuracy is achieved. The classification accuracy of depression classification by mixed features is 100 percent which means the proposed method can classify all of them correctly.
    Keywords: Electroencephalography; major depression disorder; visibility graphs; support vector machine.

  • Effective Utilization of Multi Median Variance-Independent Component Analysis on Medical Image Denoising   Order a copy of this article
    by Arathi Thiruvoth, Rahul Chingamtotatil 
    Abstract: Image denoising is a significant pre-processing technique that plays a vital role in medical image processing. Image denoising is the process of removing noise from an image and is a trade-off between noise removal and preservation of significant image details. This paper encloses a sparse representation based denoising technique called Multi Median Variance-Independent Component Analysis (MMV-ICA). Investigation evident, the incorporation of MMV ICA reveals superior denoising results over contest techniques under various noise attacks and noise level conditions. The proposed denoising algorithm based on sparse and redundant representations over learned dictionaries. The dictionary is trained using the corrupted image, and after that, the dictionary is adapted to achieve sparse signal representations. MMV-ICA algorithm presented in this paper makes use of a patch-based dictionary creation method. The paper presents the results of the MMV-ICA denoising technique, which are found to be in par with the existing sparse based denoising methods.
    Keywords: Image Denoising; Sparse Representation and Multi Median Variance-Independent Component Analysis.

  • Clinical Decision Support for Early Diagnosis and Intervention in Multiple Sclerosis   Order a copy of this article
    by Shankar Srinivasan, Jojy Cheriyan, Dinesh Mital, Riddhi Vyas 
    Abstract: Multiple Sclerosis (MS) is one of the most common neurological disorders and cause of disability among young adults in North America and Europe1. It is a non-communicable disease with no cure, debilitated by physical and mental impairments2. Recent reports show an increase in the incidence of MS in United States, more than double of the past estimate. The average period to diagnose MS still ranges from 6 months to 3 years. Studies suggest that early diagnosis and intervention can delay the progression of the disease and improve the quality of life4-6. Until today no clinical decision support exists that could be used to assist clinicians in diagnosing MS at an early stage. This study is conducted to assess the need and explore the quantifiable predictors that could be used for helping clinicians in early detection of disease activity. A review of literature followed by a quasi-experimental approach has been done to collect predictors and analyze the trending incidence of MS in United States. This study reports its preliminary analysis by concluding that currently no clinical decision support system (CDSS) exists to diagnose MS at the point of care. Predictors are available to design a clinical decision support tool for Multiple Sclerosis at the point of care that can help clinicians in the early diagnosis and intervention.
    Keywords: Multiple Sclerosis; Health Outcomes; CDSS; Decision Making; Diagnosis and Treatment.

  • Classification and signal processing analysis Of The pathological electromyogram signal (EMG)   Order a copy of this article
    by Mokdad Aicha, Debbal Sidi Mohammed El Amine, Meziani Fadia 
    Abstract: The objective of this ongoing study is to introduce electromyography signal (EMG) in time-frequency representation (TFR) applying spectrogram with optimized window size where four features were extracted. In order to qualify or not the capability of spectrogram features in separating healthy and amyotrophic lateral sclerosis (ALS) pathology, three useful classifiers namely support vector machine (SVM), linear discriminate analysis (LDA), K-Nearest Neighbor (KNN) are implemented to classify EMG signals.AS result, spectrogram with optimized window size (512 ms) and SVM based on Radial basis function (RBF-SVM) presents the highest classification accuracy of 92.3% Followed by LDA and KNN with classification accuracy of 90.86% and 83.3% respectively, where the optimized window size of 256 ms is more appropriate. Also, the proposed TFR is able to show the nonstationary variations of sEMG signals. the features exhibit statistically significant difference in the muscle healthy and neuropathic conditions. The combination of RBF based SVM is found to be most accurate (92.3% accuracy) in classifying the conditions with the extracted features based on spectrogram.
    Keywords: Amyotrophic lateral sclerosis; spectrogram; classify; support vector machine; linear discriminate analysis.

  • Study of Novel COVID-19 Data using Graph Energy Centrality: A Soft Computing Approach   Order a copy of this article
    by Mahadevi S., Shyam S. Kamath, Pushparaj Shetty D. 
    Abstract: The propagation of the new pandemic COVID-19 is more likely linked to human social relations and activities. A Social Network can be used to describe these human relationships and activities. Understanding the dynamic properties of disease dissemination through diverse Social Networks is critical for effective and efficient infection prevention and control. With the frequent emergence and spread of infectious diseases and their impact on large areas of the population, there is growing interest in modelling these complex epidemic behavior. Such an approach could provide a stronger decision-making method to tackle and control disease. In this paper, a transmission network is developed using the South Korean data, and the study of the network is carried out using Graph Energy Centrality. This measure of centrality allows us to recognize the primary cause of the spread of the virus within the established network by ranking the nodes of the network based on graph energy. The identified primary cause can then be isolated, which can prevent further spread of infection. We have also considered the Novel_Corona_Virus_2019_Dataset from Johns Hopkins University to analyse epidemiological data around the world.
    Keywords: Coronavirus; SARS-CoV-2; Centrality Measures; Graph Energy; Data Analysis; Visualization; Social Network Analysis.

  • Early Diagnosis of Coronary Artery Disease by SVM, Decision Tree Algorithms and Ensemble Methods   Order a copy of this article
    by Marziye Narangifard, Hooman Tahayori, Hamid Reza Ghaedsharaf, Mehrdad Tirandazian 
    Abstract: Heart diseases are considered to be one of the main causes of death around the world. The most reliable method for heart disease diagnosis is angiography, which is costly, invasive and has the risk of death. This study applies data mining techniques to construct a heart disease diagnosis predictive model. In this study, variations of Decision Tree (DT), Support Vector Machine (SVM) and voting algorithms are applied on UCI heart data repository. We show that integrating medical knowledge and statistical knowledge as well as fine tuning the related parameters of the models lead to an effective heart disease diagnosis model. We use two methods for implementing the proposed model. First, we use K-fold cross validation to create the model. The obtained results demonstrate that, voting algorithm and Random Forest, respectively with the accuracy of 86.42% and 85.71%, in comparison with other existing methods can more accurately identify patients with heart diseases. In the second modelling method, we shuffle dataset then split it into two datasets as Train/Validation and Test datasets. We use K-fold cross validation on Train/Validation dataset and then calculate the accuracy of the model with Test dataset. The results of this method demonstrate that, voting algorithm and random forest respectively with the accuracy of 87.5% and 90.0%, in comparison with other existing methods perform well in identification of patients with heart diseases.
    Keywords: Data mining; Machine Learning; Decision Tree; Support vector machine; Voting; Random Forest; Forest PA; Heart disease; UCI Dataset.

  • Design of protective vessel and irrigation system for an organ-on-chip device   Order a copy of this article
    by Esmeralda Zuñiga-Aguilar, O. Ramírez-Fernández, Adeodato-Israel Botello-Arredondo 
    Abstract: New devices have been in development in the biomedical engineering field which allow to mimic several physiological processes at once or individually. The present work introduces a design and computational simulation of the nutrient irrigation system, as well as the rapid prototyping of the protective vessel of an organ-on-chip (OOC) device as a way to manipulate and transport the system easily as a whole while maintaining the proper irrigation conditions in the media. The device was generated with the computer-aided design (CAD) software, SolidWorks and the irrigation of the system was performed with the aid of SolidWorks Flow Simulation module. The components of the presented OOC system were manufactured by 3D printing and by using the stereolithography technique. The results showed the flow velocity fields with values in the rage of 0.1830 m/s in the zone were the OOC is located, which indicates would allow a proper irrigation of nutrients to the cells in the chip. The proposed design of the OOC device as a whole, demonstrated to be an adequate storage and handling system for the OOC, in addition of providing a continuous irrigation of the medium.
    Keywords: organ-on-chip; OOC; protective vessel; computer-aided design; CAD; irrigation system; 3D printing; flow simulation; biomedical device.
    DOI: 10.1504/IJMEI.2021.10034729
     
  • A neural network model for preeclampsia prediction based on risk factors   Order a copy of this article
    by Masoumeh Mirzamoradi, Atefeh Ebrahimi, Ali Ameri, Masoumeh Abaspour, Hamid Mokhtari Torshizi 
    Abstract: This study proposes a risk factor-based neural network model for preeclampsia prediction during the second trimester of pregnancy. A total of 320 women giving birth (160 normal delivery, 160 with preeclampsia) at Mahdieh Gynecology Hospital during 2018-2019, were inquired for 13 risk factors. Data from 85% of the subjects (selected randomly) were employed to train the network, and data from the remaining subjects were used to test the performance of the model. This process was repeated 100 times and the average results were determined. The proposed model achieved an accuracy of 83% in classifying the subjects into normal and preeclampsia classes, based on the risk factors input data, with a sensitivity of 83% and a specificity of 82%.
    Keywords: Artificial Neural Network; Prediction; Preeclampsia.

  • Developing Hybrid Fuzzy model for predicting Severity of End Organ Damage of the Anatomical Zones of the Lower Extremities   Order a copy of this article
    by Nikolay Aleexevich Korenevskiy, Alexander Vladimirovich Bykov, Riad Taha Al-kasasbeh, Altyn Amanzholovna Aikeyeva, Sofya Nikolaevna Rodionova, Maksim Urievich Ilyash, Ashraf Adel Shaqadan 
    Abstract: In this research we show methodology to develop hybrid fuzzy decision rules and mathematical models derived to identify rheological indices (D -dimer, leukocytes, platelets, fibrinogen). A fuzzy hybrid model is developed to predict occurrence of complications due to ischemic diseases. Fuzzy hybrid modeling is suitable in health problems because expert judgment can integrated with physical data to build the model. The data set is 400 records of patients with chronic obliterating diseases developed from (2011-2018). rnThe health indicators volumetric flow rate and regional systolic blood pressure are used to define four classes of severity of end organ damage of the lower extremities for which rational treatment regimens are then worked out. rn
    Keywords: fuzzy model; critical ischemia of the lower extremities; blood vessel filling; hemostasis.

  • COVID-19 Detection through Convolutional Neural Networks and Chest X-Ray Images   Order a copy of this article
    by Venkata Subbareddy Konkula, Nirmala Devi 
    Abstract: To break the chain of COVID-19, a powerful and fast screening system is required which identifies the COVID-19 affected cases quickly such that the appropriate measures like Quarantine or treatment can be taken. The traditional Genetics assisted chain reaction test is found to have significant misclassification rate followed by more time consuming. To solve this problem, in this paper we have introduced a new model for COVID-19 detection based on Chest X-Ray (CXR) Images and Convolutional Neural Networks (CNNs). The proposed model is an automatic detection model which considers the CXR image as input and performs an in-depth analysis to discover the COVID-19. The proposed CNN model is a very simple and effective which is composed of five convolutional layers and three pooling layers. Every convolutional layer has different sized filters and different number of filters, which extracts all the possible features from CXR image. Simulation experiments are conducted over a newly constructed dataset based on the publicly available CXR (both COVID-19 and Non-CVOID-19) images. Simulation is done under two phases; 3-class and 2-class and obtained an average accuracy of 92.22% and 94.44% respectively. Thus the average accuracy is measured as 93.33%
    Keywords: COVID-19; Deep Learning; CNN; CXR images; Accuracy.

  • Early diagnosis COVID_19 by computed tomography scan   Order a copy of this article
    by Abbood Abbas Abbood 
    Abstract: COVID_19 is a virus that infects the respiratory system and causes pneumonia, kidney failure, and other health issues. The purpose of early diagnosis of COVID_19 is the fastest time to keep healthy cells for patients. A checkup for COVID_19 has been performed for patients whose ages were between (85-25) years by CT scan and Laboratory-Analysis (PCR) and X-ray and PET/CT scan. CT scan is considered the more clear method for the early diagnosis for COVID_19 because of the production of clear radiographic image quality and high-resolution and three-dimensional of a patient's chest in tow views (anterior-posterior view and the lateral view). In addition to that, a CT scan is more readily and cheaper, and more available in the hospital, also it takes less time to check the patient's chest.
    Keywords: computed tomography; COVID_19 ; lung; pneumonia.

  • Melanoma Classification by 3D Color-Texture Feature & Neural Network with Improved Computational Complexity using PCA   Order a copy of this article
    by Mohd Firoz Warsi, Ruqaiya Khanam, Usha Chauhan, Suraj Kamya 
    Abstract: The most severe kind of skin cancer is malignant melanoma. It can grow anywhere on the body. Its exact cause is still unclear but typically its caused by ultraviolet exposure from sun or tanning beds. Its detection plays a very significant role because if detected early then its curable, before the spread has begun. In this paper a computationally improved (using Principal Component Analysis, PCA) feature extraction method named 3D color texture feature (CTF) is represented which is well discriminative. For classification of melanoma from Dermoscopic images, a comparison of different types of machine-learning classification algorithms is evaluated, out of which back propagation neural network (NN) classifier outperforms all other and produce best results i.e. Accuracy = 98.5%, Sensitivity = 99.4%, Specificity = 95.0%. Obtained results are even better than benchmarking results of PH2 dataset. Comparisons of results with other similar novel works are also discussed.
    Keywords: Melanoma; colour texture feature; Dermoscopic image; neural network classifier; PCA; PH2 and skin cancer.

  • Supervised Classification Approach for Cervical Cancer Detection using Pap Smear Images   Order a copy of this article
    by Pallavi Mulmule, Rajendra Kanphade 
    Abstract: Cervical Cancer is the found in women and is the global life threatening problem. Papanicolaou test is the well-known technique used for diagnosing the cancer at the early stage. However, the pathological screening is manual, tedious and time consuming process. Therefore, the proposed method employs adaptive fuzzy k means clustering to segment the cell containing nucleus and cytoplasm from the unwanted background from the pathological pap smear image. Thereafter, the 40 features are extracted from the segmented images based on the shape, size, intensity, orientation, color, energy and entropy of nucleus and cytoplasm individually. Finally, supervised classification approach utilizing multilayer perceptron with three kernel and support vector machine with five different kernels as the classifiers to predict the cancerous cells. The classifier is trained and tested on benchmark database with 280 pap smear images. The performance of these two classifiers are evaluated and found that the MLP classifier with hyperbolic tangent activation function outperforms in all the performance criterias as compared to SVM classifier with classification accuracy of 97.14%, sensitivity of 98%, Specificity of 95% and positive predictive value of 98%.
    Keywords: Cervical cancer; Pap smear stain; pathological images; support vector machine; multi-layer perceptron; neural network.

  • MRI DENOISING: A SPARSE ICA BASED DICTIONARY LEARNING APPROACH   Order a copy of this article
    by Arathi Thiruvoth, Rahul C 
    Abstract: Image denoising is an important preprocessing technique in medical image analysis. The presence of noise in images can lead to degradation in its quality. Image denoising is the process of removing noise from an image and is basically a tradeoff between noise removal and preservation of significant image details. This paper presents a new sparse processing based denoising algorithm, the MMV-ICA (Multi-Median Variance-Independent Component Analysis) denoising algorithm. The MMV-ICA algorithm has been implemented and applied to medical images and the results are analyzed. Various noises which affect medical images are also considered. The proposed denoising algorithm is based on sparse and redundant representations over learned dictionaries. The dictionary is trained using the corrupted image. Thereafter, the dictionary is adapted to achieve sparse signal representations. MMV-ICA algorithm presented in this paper makes use of a patch based dictionary creation method. The paper presents the results of MMV-ICA denoising technique, which are found to be in par with the existing sparse based denoising methods.
    Keywords: Sparse processing; Dictionary learning; Image Denoising; Independent Component Analysis (ICA.

  • Contact less non-invasive method to identify abnormal tongue area using k-mean and problem identification in COVID 19 scenario   Order a copy of this article
    by Pallavi Pahadiya, Ritu Vijay, Kumod Gupta, Shivani Saxena, Ritu Tandon 
    Abstract: Due to the spread of COVID-19 all around the world there is a need of automatic system for primary tongue ulcer, cancerous cell detection since, everyone dont go to hospital due to the panic and fear of virus spread. These diseases if avoided may spread soon. So, in such situation there is global need of improvement in disease sensing through remote devices using non-invasive methods. Automatic tongue analysis supports the examiner to identify the problem which can be finally verified using invasive methods. In automated tongue analysis image quality, segmentation and area of affected region plays an important role for disease identification. This paper proposes mobile based image sensing and sending the image to the examiner, examiner if finds issue in image may guide the user to go for further treatment. For Segmentation of abnormal area k-mean clustering is used with varying its parameters.
    Keywords: Tongue diagnosis system (TDS); Image Acquisition; Thresholding; Segmentation; k-mean clustering; mobile app.

  • Real-time Electrocardiogram monitoring for heart diseases with secured Internet of Thing Protocol   Order a copy of this article
    by Trupti Thite, Daulappa Bhalake 
    Abstract: Real-Time effective ECG data collecting, transmitting, and monitoring system with feature extraction is a big challenge in biomedical signal processing. The electrocardiogram is a widely used testing system to measure and analyse coronary heart diseases i.e. cardiovascular diseases (CVDs). Heart Rate remote monitoring under the service provided by hospital equipment is the current need to improve technologies. IoT enabled medical device helps efficiently to achieve this. To design such systems energy-efficient communication protocol, data-transfer minimization, assurance of delivery (Security), heterogeneous natures of the environment are necessary considerations. This Paper outlines a literature survey of three main important areas; "Real-Time ECG Monitoring using wearable sensors", "Feature Extraction and classification Method for Real-time ECG Monitoring", "Secured IoT Protocol for real-time ECG monitoring".
    Keywords: ECG; CVD; Tele-monitoring; Real-Time; Tele-health; Security; Internet-of-Things.

  • A new hybrid method for left ventricular analysis in cardiac cine MRI   Order a copy of this article
    by Sarra DALI YOUCEF, Messadi Mahammed 
    Abstract: The increase of deaths by cardiac arrest each year makes the computer-aided diagnosis a necessity for prognosis and treatment of cardiovascular diseases. The cardiac MRI is an imaging technique commonly used for the exploration of the heart. This technique has emerged as a reference for diagnosis of various cardiovascular diseases. In order to analyze the cardiac function in MRI image, the segmentation phase of the left ventricle (LV) is a necessary step to separate left ventricular region from the back ground. Wherefore, thresholding, region growing and active contour model are combined in our approach to obtain the left ventricle form exactly. Finally, the parameters such as end-diastolic volume (EDV), end-systolic volume (ESV) and ejection fraction (EF) are calculated for the LV function quantification. The whole process is applied to the Heart data base containing 18 patients where the experts manual contour is available. Our results show that our method gives an excellent segmentation of LV and a good correlation between our parameters and those obtained by the experts. We have found a correlation of 97% for EDV, 96% for ESV and 89% for EF. They confirm the accuracy of the proposed method and its eventual in aid of diagnosis.
    Keywords: left ventricle; cardiac cine MR images; segmentation; thresholding; region growing; active contour; characterization.

  • Detecting Heart Ailments by Investigating ECG with Neural Networks   Order a copy of this article
    by Prabadevi B, Deepa N, KRITHIKA LB, RAVI R.A.J. GULATI, Sivakumar R 
    Abstract: Heart ailments or Cardiovascular Disease (CVD) are the diseases that incorporate the blood vessels or heart, which is common among various age groups. Though numerous techniques have been used to classify heart abnormalities, such as Classification and regression trees (CART) they are less accurate. Therefore, a technique for early detection of heart ailments with more accuracy is mandatory. A model has been designed and proposed to detect the heart ailments using three-layered neural networks for better accuracy. Electrocardiogram (ECG or EKG) is used to identify arrhythmia (irregular heartbeat) accurately, and the UC Irvine (UCI) arrhythmia dataset of ECG reports are used to implement a classification for different types of heart abnormalities.
    Keywords: cardiovascular disease; electrocardiogram; Networks; Arrhythmia; Classification.

  • ANALYZING HOSPITAL FACTORS INFLUENCING INTERHOSPITAL SURGICAL SITE INFECTION RATES   Order a copy of this article
    by Vibha Gujar, Shankar Srinivasan, Dinesh Mital, Frederick Coffman 
    Abstract: The surgical site infection (SSI) prevention enactments in the hospitals require comprehensive infection surveillance and control. Each hospital system in the United States displays its own population demographics, pathogenic profiles and surgical volume based on varying geographical location. Remarkably, to stop current challenges like penalties due to poor quality in care, the methods to detect SSI effects and care quality require updates based on meaningful assessment of rates between the hospitals by adding more features. Therefore, utilizing the risk factors adjustment, this retrospective analysis aimed to analyze SSI patients and compare interhospital at-risk individuals based on hospital-related features. The descriptive and regression analysis for each hospital size (small:<250 beds, medium: up to 450 beds, and large: 450+ beds) demonstrated a significant influence of surgical categories, pathogen, hospital location and teaching status on the SSI rates. It distinctively identified patients with cardiovascular and respiratory surgical procedures more in rural than urban hospitals as the high-risk interhospital distinguishing clusters. Though infection rates conversed the population prevalence, adjusting the sociodemographic and other hospital characteristics for the case-mix, regression helped recognize the at-risk patients broadly. The findings from this study, thus, can help hospital organizations to define more case-mix features to device premature cautioning systems before discharge and better tracking approaches.
    Keywords: Surgical site infection; post-surgical infection; catheterization; hospital size.

  • Cell-Seeded Small Intestinal Submucosa (SIS) as a Synthetic Vascular Graft for Implantation in Dogs   Order a copy of this article
    by Mohsen Ahmadi, Behnam Molavi, Ali Ghiaseddin, Shahram Rabbani, Hosein Ahmadi Tafti, Reza Ghiassi, Abtin Mamdouh, Shapoor Shirani 
    Abstract: We investigated the use of small intestinal submucosa (SIS) as a synthetic vascular graft for implantation in a canine model. Three months after implanting the graft in the thoracic aorta of the dogs, animals were sacrificed and grafts were removed for mechanical testing and cell differentiation analysis. The results showed differentiation of bone marrow cells into endothelial smooth cells and lower levels of vimentin, vascular endothelial growth factor receptor (VEGFR), cellularity, and collagen amount in the graft compared to the aorta. In terms of mechanical properties, the grafts were significantly more rigid than the natural aorta. Finally, while the coexistence of differentiated cell layers containing fibroblast, smooth muscle cells and endothelial cells made the SIS a potentially effective artificial graft in the dog model, lack of enough flexibility of the graft remains a problem relative to clinical use of the grafts.
    Keywords: Intestinal submucosa; Biodegradable scaffold; Cell seeding; Synthetic vascular graft.

  • Performance Evaluation of Optimized SVM for Classification of Brain Tumor   Order a copy of this article
    by Arun Kumar, M.A. Ansari, Alaknanda Ashok 
    Abstract: In today's scenario, machine learning tools are most widely used for the classification of images in the field of medical science. Support Vector Machine(SVM) is one of them most popular and highly used for such classifications. Further, such classifications are highly related to the number of features selected from any medical image. The computation time and the memory required for the successful implementation of any classification tool is directly dependent on the number of features. So, in order to get the more accurate classification results, the features of the medical image must be optimized. The present study mainly aims on the development of an improved classification technique by combining with some optimization approaches. In this study, support vector machine is implemented for the classification of the brain tumor by optimizing the features of the Magnetic resonance imaging (MRI) images using three different optimization approaches namely, Particle swarm optimization, Grey wolf optimization and Firefly Algorithm. The results obtained from this study depict that support vector machine along-with the grey wolf optimization provides more accurate classification of the brain tumor with an accuracy of 96.8%
    Keywords: Magnetic resonance imaging;Classification;Optimization; Brain tumor;Supprot Vector Machine.

  • Impact of COVID-19 on Individuals Mental Health and Preventive Health Behaviors: A Conceptual Framework   Order a copy of this article
    by Rajesh Pai, Naganna Chetty, Sreejith Alathur 
    Abstract: The Corona Virus Disease (COVID-19) is a pandemic that facilitate a confrontation space for scientific and social existence of human frontiers. The rapid spread and mortality rate of COVID-19 and the preventive measures including social distancing and its impact on economy, developed an unprecedented consciousness around the globe. It has created an effect on the mental health of individuals employed across various sectors and is outlined in this study. There is currently an inadequate theoretical model that focuses on the comprehensive understanding of the psychology of preventive behavior during the outbreak of pandemics. In this study, a transnational model is delineated for assessing the adoption of preventive behavioral practices associated with COVID-19 pandemic. It uses the components derived from the theories of situational awareness and health belief model and literatures related to impact of containment strategies on various sectors. The contribution include policy recommendations that can be helpful for the healthcare professionals and government to control the disease spread.
    Keywords: COVID-19; Health Belief Model; Situational Awareness; Mental Health; Preventive Health Practices.

  • Comparative Analysis of various Supervised Machine Learning Algorithms for the Early Prediction of Type-II Diabetes Mellitus   Order a copy of this article
    by Shahid Mohammad, Majid Bashir 
    Abstract: Diabetes is one among the top 10 causes of death. Diabetes mellitus is a fatal disease that poses a unique and significant threat to millions of people over the globe. Despite the absolute truth about the statistical data of diabetes from various sources like the World Health Organization, International Diabetes Federation, American Diabetes Association, etc., there is a positive message that early prediction along with appropriate care, diabetes mellitus can be managed and its complications can also be prevented. Nowadays in healthcare sector, machine learning techniques are gaining immense importance through their analytical classification capabilities. Machine learning paradigms are being exploited by researchers for better prediction of diabetes to save human lives. In this paper, a comparison of different supervised machine learning classifiers based on the performance evaluation of various metrics for the early prediction of type-II diabetes mellitus (T2DM) has been performed. The experimental work has been successfully carried out using six machine learning classification algorithms. Among all classifiers, Random Forest (RF) performs better for predicting T2DM with an accuracy rate of 93.75 %. In addition, 10- fold cross-validation method has been applied to remove the class biasness in the dataset.
    Keywords: Type-II diabetes mellitus; machine learning; framework; LR; NB; SVM; DT; RF; ANN.

  • Computational fluid dynamic analysis of carotid artery with different plaque shapes   Order a copy of this article
    by Raman Yadav, Sharda Vashisth, Ranjit Verma 
    Abstract: Plaque formation in the carotid artery results in carotid artery disease. Atherosclerotic plaque is mostly found at the branching and bifurcation of the artery. The present work investigates the effect of Wall Shear Stress (WSS) and blood flow through carotid artery under various stenosis shapes. Five plaque shapes are considered i.e. plaque at branching, plaque at bifurcation, cosine plaque, irregular plaque, blood clot in external artery. WSS and velocity of blood through stenosed artery was simulated and analyzed using ANSYS Fluent Computational Fluid Dynamics (CFD). Comparison of the wall shear stress at wall artery showed that the artery having blood clot has maximum WSS followed by plaque at bifurcation, cosine shape, irregular shaped stenosis and plaque at branching. It is found that shapes of stenosis play key role in WSS. As stenosis increases in artery WSS also increases. The velocity of flow across stenosis is highest for artery having plaque at bifurcation followed by plaque at branching, irregular plaque, cosine plaque and artery having clot.
    Keywords: Wall Shear Stress; Atherosclerosis; Bifurcation; Stenosis; Plaque shape; Computational Fluid Dynamics.

  • Segmentation of Retinal Blood Vessel structure using Birnbaum-Saunders (Fatigue Life) Probability Distribution Function   Order a copy of this article
    by K. Susheel Kumar, Nagendra Pratap Singh 
    Abstract: Segmentation of the retinal vessel in an eye is a significant task. Retinal blood vessels contain essential information useful in the computer-based diagnosis of various retinal pathologies, such as diabetes, hypertension, etc. In this paper, a novel approach of Probability Distribution Function of Birnbaum Saunders (Fatigue Life) based on matched filtering methods and imported to improve the segmentation of retinal blood vessels concerning existing matched filter methods. In this paper, the retinal blood vessel segmentation divided into preprocessing matched filter-based proposed method and postprocessing. In the preprocessing stage, improve the retinal image quality a different process is known as Principal Component Analysis (PCA) is used to convert to grayscale, followed by a Contrast Limited Adaptive Histogram Equalization known as CLAHE to enhance the grayscale retinal image. For designing of the Birnbaum Saunders (Fatigue Life) based matched filter, suitable values of the different parameters are chosen based on a complete experimental analysis In postprocessing based on an optimization technique based on entropy and length filter for removing the outer artifacts. The proposed approach tested on retinal images of DRIVE database to measure the performance in term of Average True Positive Rate (ATPR), Average False Positive Rate (AFPR), Average Accuracy, Average Root mean square deviation (RMSD), Avg F1-Score and Receiver operating characteristic (ROC) curve plotted. Average Area under the curve (AUC) calculated. The results of values are obtained ATPR 71.39 %, AFPR 2.67 %, Average Accuracy 94.61 %, Average RMSD 0.0054, Average F1-Score 0.684 and Average AUC for DRIVE Dataset 0.9361 respectively.
    Keywords: Birnbaum-Saunders (Fatigue) Probability Distribution Function; Matched filter; Retinal blood vessel segmentation; Optimal thresholding-based entropy.

  • Image Reconstruction Algorithms for Comparison and spotting of Impurities utilizing EIT   Order a copy of this article
    by Priya Hankare 
    Abstract: Abstract- Breast cancer is a common and life threatening disease if not treated in its early stage. Electrical Impedance Tomography is an imaging technique employed in medical field for analysis and diagnosis purpose for early breast cancer disease detection, which is based on voltage and current or impedance measurements. Presently various methods are available for screening and diagnosis, but these methods are not sufficient for all medical conditions to conclude and pinpoint the presence of tumor inside breast during scanning. EIT is promising and popular due to being non-invasive and low cost method for Breast Cancer Detection. In this paper 2 dimensional Electrical Impedance Tomography database is used for image reconstruction. The database consists of five current patterns with respective voltage measurements of a circular tank. The Electrical Impedance and Diffused Optical Reconstruction Software (EIDORS) of Matlab Toolbox is used to reconstruct images of circular phantom approximating a breast hypothetical model.
    Keywords: Electrical Impedance Tomography (EIT); tumor; Phantom; Image Reconstruction; Conducting and non-conducting objects.

  • Autism Spectrum Disorder Diagnosis and Machine Learning: A review   Order a copy of this article
    by Chandan Jyoti Kumar, Priti Rekha Das, Anil Hazarika 
    Abstract: Autism spectrum disorder (ASD) with global prevalence estimate of approximately 1%, makes it a major social health concern. To make the diagnostic process of ASD faster, convenient and more accurate the researchers have started to apply a dozen of machine learning techniques. This review considers major publications of last decade to identify various aspects of machine learning research in ASD diagnosis. Findings of diagnostic tools and techniques are highlighted so as to detect significant features for machine learning models. Based on types of data, the article categorizes the diagnostic research in two broad categories: behavioral and neuroimaging. In addition, it explores the various findings of these behavioral and neuroimaging techniques in ASD subjects and makes a detailed analysis of performance of these techniques in combination with different machine learning models for ASD diagnosis. This article highlights key research fields of ASD and discusses potential research direction in the future.
    Keywords: Autism Spectrum Disorder; Machine Learning; Neuroimaging; ASD Datasets.

  • A Novel Method to Study Resting-State and Functional Connectivity in infants using Coherence Analysis of EEG   Order a copy of this article
    by Hemang Shrivastava 
    Abstract: Our goal was to study functional connectivity in infants using Event-Related Potentials (ERP) of Electroencephalography (EEG). We hypothesized that coherence analysis of the power spectral density of tactile stimuli responses would differentiate preterm from full-term infants. This is the first study demonstrating differences between resting state and tactile functional connectivity using touch stimuli, in preterm infants. We also statistically proved that network coefficient characteristic path length was decreased and global efficiency & average clustering coefficient were increased for tactile connectivity networks in full-term infants compared to preterm infants. Thus, we concluded that tactile brain connectivity in full-term infants is more efficient than preterm infants. No statistically significant differences were found in resting-state connectivity for full-term and preterm infants.
    Keywords: Functional Connectivity; Resting-state connectivity; EEG; Coherence Analysis; Event-Related Potential; Infant brain development; Somatosensory; Connectivity Networks; Small world networks.

  • Curtailing Insomnia in Non-Intrusive hardware less Approach with Machine Learning   Order a copy of this article
    by K.V. Shriram, Sini Raj Pulari, Ragu Raman 
    Abstract: The significant challenges nowadays with the expanded utilization of the cell phone are restlessness and risk to mental health. Rest time is implied for the cerebrum to revive. If the rest designs are disturbed because of a nonstop outer aggravation, it upsets the profound rest. Most of us prefer music as the option to induce sleep and relax. Headphones or earphones are used for the same. It is shrewd to turn off the music after the individual rests, which majority of us don\'t do as we are as of now rested by at that point. This causes damage. Excessive usage of earphones or headphones is one part of it and unnecessary feed to the ears while sleeping shall trigger Noise-Induced Hearing Loss. Here, we propose a framework built with Machine Learning as key. This will guarantee that the music player is halted once the individual using has dozed. This ensures proper rest and forestalls sleep deprivation/ NIHL.
    Keywords: Machine Learning; Insomnia; Sleep loss; Noise-Induced Hearing Loss; Technology for sleep; Hearing Loss;.

  • An affordable, intelligent, and fully functional Smart Ventilator System.   Order a copy of this article
    by Bharath Krishnan, Achuth Karakkat, Rohit Mohan Menon, K.V. Shriram 
    Abstract: Because of the Corona Virus Disease (COVID-19) pandemic scenario that the world is going through right now, there has been a surge in the requirement for emergency life support systems like ventilators. Conventional ventilators used in Intensive Care Unit (ICU)s tend to be bulky and expensive and demand high power consumption and trained experts to operate. The aim of the project is to deliver a solution for the growing demand for portable ventilators and a viable replacement for nurse assisted artificial resuscitation. Mechanical ventilation is the process of supplying scheduled breaths to a patient who lacks the ability to do the Work of Breathing (WOB) himself/herself. The pattern of breathing for every patient is identified using sensor(s) and the required volume of air is supplied by compressing a Bag Valve Mask (BVM) device. A machine learning algorithm learns the pattern of breathing and adjusts the pressure and volume controls specific to every patient. All operations and control mode switching for the device can be done using an Android app, hence making it user friendly.
    Keywords: Covid 19; CoronaVirus; ICU; Ventilator; Smart Ventilator; Breathing issues;.

  • IHDPM: An Integrated Heart Disease Prediction Model for Heart Disease Prediction   Order a copy of this article
    by Abhilash Pati, Manoranjan Parhi, Binod Kumar Pattanayak 
    Abstract: The prediction of Heart Disease (HD) helps the physicians in taking accurate decisions towards improvement of the patient's health. Hence, Machine Learning (ML), Data Mining (DM), and Classification techniques play a vital role in understanding and reducing the symptoms related to heart diseases. In this paper, an Integrated Heart Disease Prediction Model (IHDPM) has been introduced for heart disease prediction by considering Principal Component Analysis (PCA) for dimensionality reduction, Sequential Feature Selection (SFS) for Feature Selection, and Random Forest (RF) classifier for the purpose of classifications. Some experiments are performed by considering the evaluative measures namely, Accuracy, Error rate, Precision, Recall or Sensitivity, F-Measure, True positive rate, True negative rate or Specificity, False positive rate, False negative rate, and Matthew's Correlation Coefficient (MCC) on Cleveland Heart Disease Dataset (CHDD) sourced from UCI-ML repository and Python language thereby concluding that the proposed model outperforms in comparison with other six conventional classification techniques. The proposed model will help out the physicians in conducting diagnosis of the heart patients proficiently and may be helpful in further investigations using different datasets related to heart disease and at the same time, it can be applicable in predictions of other chronic diseases like Diabetes, Cancers etc.
    Keywords: Machine Learning (ML); Data Mining (DM); Classification Techniques; Sequential Feature Selection (SFS); Principal Component Analysis(PCA); Heart Disease Prediction.

  • A novel method for automatic identification of fovea location and its centre in colour retinal fundus images   Order a copy of this article
    by Bharati M. Reshmi, I.S. Rajesh, Bharathi Malakreddy A 
    Abstract: The identification of fovea region plays a significant role in the detection of diabetic maculopathy. The presence of exudates within 500 micrometre from fovea centre requires laser treatment as it is sign of sight threatening. An ophthalmologist can decide over the nature of the treatment depending upon the position of the exudates from the fovea. Hence it is very important to identify fovea and its centre with high accuracy. In this work, we have proposed a novel algorithm for identification of fovea location and its centre in colour retinal fundus images. The novelty of this work aims at an approach where fovea location and its centre identification are done excluding blood vessels and OD. Initially, the grid is drawn over the retinal image, then the designed algorithm searches for region of interest (ROI) for the candidate fovea region by considering the four coordinate points. Finally, by using dark intensity property of fovea and morphological operations, fovea location and its centre is identified. The proposed method is simple, robust and it is tested on a publicly available MESSIDOR database and an accuracy of 97.37% is achieved.
    Keywords: diabetic retinopathy; diabetic maculopathy; optic disc; region of interest; ROI; blood vessels.
    DOI: 10.1504/IJMEI.2021.10034764
     
  • Optic disc and optic cup segmentation in retinal images   Order a copy of this article
    by Thamer Mitib Al Sariera, Lalitha Rangarajan 
    Abstract: Automated segmentation of the optic disc (OD) and optic cup (OC) is important for retinal image analysis and retinal diabetic retinopathy systems. For OD segmentation, this paper presents a method done in three steps that combines variance and brightness features of the OD to localise leading to increased accuracy in detecting OD rather than using just one feature. As a first step, the image is divided into non-over lapping windows. Then the brightest window with maximum variance in intensity is selected. Subsequently the circular Hough transform (CHT) is applied to get the OD segmentation. OC segmentation is done in two steps: 1) blood vessels inside the OD are eliminated and; 2) restricted region growing performed to get the OC segmentation. The efficacy of the proposed method is demonstrated using the standard benchmark DRIVE and DIARETDB1 databases and by comparing the results of proposed method and some methods in silico.
    Keywords: optic disc; optic cup; retinal image; diabetic retinopathy; circular Hough transform; CHT.
    DOI: 10.1504/IJMEI.2021.10034765
     
  • A low-complexity volumetric model with dynamic inter-connections to represent human liver in surgical simulators   Order a copy of this article
    by Sepide Farhang, Amir Hossein Foruzan 
    Abstract: We propose a method for visualisation of the human liver to represent nonlinear behaviour of the tissue and to preserve the object's volume. Our multi-scale model uses dynamic interconnections to keep the size of the gland. We introduce two new parameters to control the influence of an external force on the nonlinear material of the liver. Another novelty in the proposed method is to design a multi-dimension data structure which makes it possible to run our code on conventional CPUs and in real-time. We evaluated the proposed algorithm both quantitatively and qualitatively by synthetic and clinical data. Our model preserved 98.4% and 94.1% of a typical volume in small and large deformation, respectively. The run-time of our model was 0.115 second. Our model preserves the volume of a liver during both small and large deformations and our results are comparable with recent methods.
    Keywords: medical virtual reality; mass-spring model; liver surgical simulator; volumetric mesh; multi-scale mesh model.
    DOI: 10.1504/IJMEI.2021.10034766
     
  • MR-brain image classification system based on SWT-LBP and ensemble of SVMs   Order a copy of this article
    by Mohammed Khalil, Habib Ayad, Abdellah Adib 
    Abstract: In this paper, we present an efficient magnetic resonance (MR) image classification system. At the first stage, the brain image is decomposed into several subbands using stationary wavelet transform (SWT). Then, local binary patterns (LBP) with reduced histograms are computed for each subband to form several primary feature vectors. Principal components analysis (PCA) followed by linear discriminant analysis (LDA) are then applied to each primary feature vector in order to transform them into new lower-dimension feature vectors. The third stage consists of using an ensemble of support vector machines (SVMs) in order to build voters and make the final decision on the requested image. The designed system is evaluated on 255 brain images with five-fold cross-validation. Experimental results show that the proposed system achieves a classification rate of 99.78% which outperforms the existing brain classification approaches.
    Keywords: MR-brain image classification; local binary patterns; LBP; stationary wavelet transform; SWT; linear discriminant analysis; LDA; ensemble of SVMs.
    DOI: 10.1504/IJMEI.2021.10034767
     
  • A systematic review on detection and estimation algorithms of EEG signal for epilepsy   Order a copy of this article
    by Shazia Hasan, Ameya K. Kulkarni, Sebamai Parija, Pradipta Kishore Dash 
    Abstract: Epilepsy is the most common neurological disorder characterised by a sudden and recurrent neuronal firing in the brain. As EEG records the electrical activity of the brain so it helps to detect epilepsy of the subject. Early detection of epileptic seizure using EEG signal is most useful in several diagnoses. So aim of the work is to study and compare the different techniques used for feature extraction and classification algorithm. Epilepsy detection research is oriented to develop non-invasive and precise methods to allow accurate and quick diagnose. In this paper, we present a review of significant researches where we can find most suitable method among existing members to improve computing efficiency and detect epilepsy of the subject efficiently and accurately with lesser computational time. The database which is publicly available at Bonn University is taken.
    Keywords: EEG signal; epilepsy; seizure detection algorithm; performance analysis; wavelet; Hilbert transform; empirical mode decomposition; EMD.
    DOI: 10.1504/IJMEI.2021.10034768
     
  • Electro-pneumatic system for intussusception reduction in children and its application in the paediatric surgery   Order a copy of this article
    by Mohamed Ras Lain, Chouaib Daoudi, Mohamed Souilah, Abdelahafid Chaabi, Hichem Choutri 
    Abstract: Intussusception is an important cause of acute abdomen pain in infants that often occurs between 3 and 12 months of age. The early diagnosis of this disease is vital factor to avoid recourse to surgery that can pose a real danger to the infant. Recently, pneumatic reduction has emerged as a safe and promising method in the treatment of intussusception. The work presented in this article focuses mainly on the implementation of embedded instrumentation based on pressure sensor to improve the manual pneumatic system, which is currently used by the doctors. Initially, a sensor is used for the acquisition of intestinal pressure. The signal conditioner is based around a specialised amplifier and the processing unit is built around microcontroller. A keyboard and LCD display were used to introduce and visualise the evolution of intestinal pressure, respectively. The experimental results show the feasibility of the designed prototype in the treatment of intussusceptions.
    Keywords: intussusception; paediatric surgery; pneumatic reduction; embedded system; pressure sensor; microcontroller.
    DOI: 10.1504/IJMEI.2021.10034769
     
  • Ex vivo experimental and numerical study of stresses distribution in human cadaveric tibiae   Order a copy of this article
    by Maria G. Fernandes, Elza M.M. Fonseca, Renato N. Jorge, Maria C. Manzanares-Céspedes 
    Abstract: The mechanical behaviour of human bone tissue subject to drilling has been recently reviewed due to its increased clinical interest. However, no published data exist regarding stress analysis during the drilling. In this study, an elasto-plastic dynamic FE model of bone drilling was developed using the human cadaveric tibia obtained with a handheld 3D scanner. The FE model was validated with experimental tests and different drilling conditions were simulated in order to study the stresses distribution during the drilling process. The developed FE model was in good agreement when compared with experimental tests. Results suggest that the use of lower drill speed and higher feed-rate lead to a decrease in the stress level of the treated tibial bone. The developed FE model can be used for future studies and cover not only the mechanical behaviour of human tibiae but also the thermal aspects.
    Keywords: human tibia; drilling; stresses; numerical model; experimental model; feed-rate; drill speed.
    DOI: 10.1504/IJMEI.2020.10031215
     
  • The impact of income level on childhood asthma in the USA: a secondary analysis study during 2011-2012   Order a copy of this article
    by Jalal Al Alwan 
    Abstract: Despite the abundance of researches relating children and asthma, the racial/ethnic influence on asthma threat have not been fully explained. The aim was to conduct a consistent and new study on a large-scale nationally representative data, including a minority group that has been usually eliminated from racial/ethnic literature. The 2011-2012 National Survey of Children Health (NSCH) dataset was utilised. Asthma was more prevalent among African-American children (22.9%) more than white American children 13.1% (p ≤ .0001). Analysis of the multivariate model revealed a greater risk of asthma for the black African American children comparatively to white American children (adjusted OR 0.522, 95% CI 0.459-0.595). Our findings indicated that childhood asthma was associated with racial/ethnic status, especially with children with low income level.
    Keywords: childhood asthma; racial/ethnic influence; National Survey of Children Health; federal poverty level; USA.
    DOI: 10.1504/IJMEI.2021.10034770