Forthcoming and Online First Articles

International Journal of Computational Intelligence Studies

International Journal of Computational Intelligence Studies (IJCIStudies)

Forthcoming articles have been peer-reviewed and accepted for publication but are pending final changes, are not yet published and may not appear here in their final order of publication until they are assigned to issues. Therefore, the content conforms to our standards but the presentation (e.g. typesetting and proof-reading) is not necessarily up to the Inderscience standard. Additionally, titles, authors, abstracts and keywords may change before publication. Articles will not be published until the final proofs are validated by their authors.

Forthcoming articles must be purchased for the purposes of research, teaching and private study only. These articles can be cited using the expression "in press". For example: Smith, J. (in press). Article Title. Journal Title.

Articles marked with this shopping trolley icon are available for purchase - click on the icon to send an email request to purchase.

Online First articles are published online here, before they appear in a journal issue. Online First articles are fully citeable, complete with a DOI. They can be cited, read, and downloaded. Online First articles are published as Open Access (OA) articles to make the latest research available as early as possible.

Open AccessArticles marked with this Open Access icon are Online First articles. They are freely available and openly accessible to all without any restriction except the ones stated in their respective CC licenses.

Register for our alerting service, which notifies you by email when new issues are published online.

We also offer which provide timely updates of tables of contents, newly published articles and calls for papers.

International Journal of Computational Intelligence Studies (2 papers in press)

Regular Issues

  • Wolf : A framework for digital workplace - Architecture and models -   Order a copy of this article
    by Khadija ELAMRANI, Noureddine Chenfour, Mohamed LAHMER, Ghita Daoudi 
    Abstract: The main purpose of the digital workplace (DW) is to ensure to the organizations different contributors or actors a portal of digital services, which are accessible through a virtual desktop covering all its business services. During our studies, we were able to identify five major problems. First of all, we note a great confusion in the related definitions because most of them are restricted to the teaching sector. Secondly, most existing DWs are summarized as a simple gateway to pre-existing digital tools collection that covers the organizations business domains, without any means of communication between them. Another problem is the lack of a reference architecture. Moreover, we could not identify any logical or physical model to represent the different DWs entities. Lastly, there is a total absence of a standard or even an appropriate vocabulary.rnFaced with these shortfalls, we propose in this paper a set of fundamentals that is composed by a definition encapsulating the different domains, as well as a naming system and a vocabulary that identify both the entities that compose the virtual desktop and their connections and flows. Based on these fundamentals, we also propose our framework WOLF (Digital Workplace based on Open and Light architecture Framework) that generate automatically customized digital workplaces, and is distinguished from other existing DWs solutions by its generic and extensible character. The generated DW encapsulates all of the organizations domains, services, flows and a collaboration system between the different actors. Our proposed frameworks architecture allows us to classify and organize the various entities into a tree representation whilst data nodes are modelled using XML files.
    Keywords: Digital workplace; Digital workspace; Collaboration; Digital work environment.

  • Alzheimer's disease prediction using Regression models and SVM   Order a copy of this article
    by M. Rohini, D. Surendran 
    Abstract: Alzheimer's disease (AD) and cognitive impairment due to aging are the recently prevailing diseases among aged inhabitants because of an increase in the aging population. Several demographic characters, structural and functional neuroimaging investigations, cardio-vascular studies, neuropsychiatric symptoms, cognitive performances and biomarkers in cerebrospinal fluids are the various predictors for AD. We can consider these input features for the prediction of symptoms whether they belong to AD or normal cognitive impairment for aging. In the proposed study, the hypothesis is derived for supervised learning methods such as multivariate linear regression, logistic regression, and SVM. We perform feature scaling and normalization with features as an initial step for applying the parameters to derive the hypothesis. We analyze performance metrics with the implementation results. The present work is applied to 1000 baseline assessment data from Alzheimers disease Neuro-Imaging Initiative studies (ADNI) that give conversion prediction. The comparison of results in literature studies suggests that the efficiency of the proposed study is highly helpful in differentiating AD pathology from cognitive impairment because of aging.
    Keywords: Multivariate linear regression; logistic regression; Support Vector Machine(SVM);Feature scaling; Normalization;ADNI.