Forthcoming articles

International Journal of Cloud Computing

International Journal of Cloud Computing (IJCC)

These articles have been peer-reviewed and accepted for publication but are pending final changes, are not yet published and may not appear here in their final order of publication until they are assigned to issues. Therefore, the content conforms to our standards but the presentation (e.g. typesetting and proof-reading) is not necessarily up to the Inderscience standard. Additionally, titles, authors, abstracts and keywords may change before publication. Articles will not be published until the final proofs are validated by their authors.

Forthcoming articles must be purchased for the purposes of research, teaching and private study only. These articles can be cited using the expression "in press". For example: Smith, J. (in press). Article Title. Journal Title.

Articles marked with this shopping trolley icon are available for purchase - click on the icon to send an email request to purchase.

Register for our alerting service, which notifies you by email when new issues are published online.

Open AccessArticles marked with this Open Access icon are freely available and openly accessible to all without any restriction except the ones stated in their respective CC licenses.
We also offer which provide timely updates of tables of contents, newly published articles and calls for papers.

International Journal of Cloud Computing (103 papers in press)

Regular Issues

  • Optimization of Automatic Web Services Composition Using Genetic Algorithm   Order a copy of this article
    by Mirsaeid Hosseini Shirvani 
    Abstract: In recent years, with the expansion of organizations, service-oriented architecture is known as an effective tool for creating applications. Hence, the need to use web services in organizations to reduce costs is felt more than ever. The purpose of web service composition is to determine a proper mix of user requests that cannot be met by a simple web service. In this paper, a genetic-based algorithm is proposed for combining cloud services that ensures multiple clouds work efficiently. The proposed method also provides an overview of the weaknesses of other available methods in terms of computational complexity in automated selection of web services and makes it possible to fulfill the demands of the composition of web services in a more optimal way. It is worth noting that the simulation results show the superiority of the proposed method compared to other methods analyzed in the paper. Keywords: Web Service, Web Services Composition, Service-Oriented Architecture, Quality of Service.
    Keywords: Web Service; Web Services Composition; Service-Oriented Architecture; Quality of Service.

  • A Secure and efficient multi cloud-based data storage and retrieval using hash-based verifiable secret sharing scheme   Order a copy of this article
    by Majid Farhadi, Hamideh Bypour, Seyyed Erfan Asadi 
    Abstract: As the availability of many smart devices rises, fast and easy access to data as well as sharing more information is felt. Cloud computing is a computational approach that shares configurable resources such as network, servers, storage space, applications and services on the Internet, and allows the user to access services without the expertise or control of the technology infrastructure. The confidentiality, integrity, and availability of the data, reducing computational cost and communication channel between the data owner (user) and cloud service providers (CSPs) are essential parts of cloud computing. In the paper, we propose a new scheme to construct a secure cloud data storage based on the verifiable secret sharing scheme with public verifiability to protect data integrity. In the new scheme, the validity of secret shares can be publicly verified without leaking the privacy of secret shares in the verification phase. Moreover, the verification phase does not depend on any computational assumptions. Furthermore, the proposed scheme cannot only detect the cheating but also identify who are the cheaters. It is worth noting that the proposed scheme is more efficient compared with the other secret sharing-based cloud data storage since heavy and complex computation is not required.
    Keywords: Cloud computing; cloud data storage; verifiable secret sharing scheme; public verifiability; hash function.

  • Stream of Traffic Balance in Active Cloud Infrastructure Service Virtual Machines Using Ant Colony   Order a copy of this article
    by Ankita Taneja, Hari Singh, Suresh Chand Gupta 
    Abstract: Cloud load balancing is the manner of distributing computing resources and workloads over a cloud computing infrastructure. It allows an enterprise to manage workloads through appropriate resource allocation in the cloud. Various load balancing techniques in cloud computing are reviewed and the work presented in this paper thoroughly analyzes and compares two well-known algorithms in MATLAB, the Ant Colony Optimization (ACO) Algorithm and Genetic Algorithm (GA). The objective is to produce an optimal solution for cost and execution time through balancing the workload. It is observed through experimental observations that ACO based load balancing possess incurs low cost and low execution time as compared to the GA for a constant workload over a fixed number of cloud machines. However, the execution time follows a different trend when workload increases and more machines are utilized to handle the increased workload; it rises sharply in ACO as compared to the GA.
    Keywords: ACO; ant colony optimization; GA; genetic algorithm; load balancing; cloud computing; pheromone matrix; pheromone table; IAAS; infrastructure as a service.

  • Memory constraint Parallelized resource allocation and optimal scheduling using Oppositional GWO for handling big data in cloud environment   Order a copy of this article
    by Chetana Tukkoji, Seetharam Keshav Rao 
    Abstract: In cloud computing, task scheduling is one of the challenging troubles, especially when deadline and cost are conceived. On the other hand, the key issue of task scheduling is to reach optimal allocation of users tasks for to optimize the task scheduling performance and reduce non-reasonable task allocation in clouds. Besides, in terms of memory space and time complexities, the processing of huge number of tasks with sequential algorithm results in greater computational cost. Therefore, we have improved an efficient Memory constraint Parallelized resource allocation and optimal scheduling method applying Oppositional GWO for resolving the scheduling trouble of big data in cloud environment by this paper. In parallel over distributed systems, the suggested scheduling approach applies the MapReduce framework to perform scheduling. The Map Reduce framework is consisted of two main processes; particularly, the task prioritization stage (with Fuzzy C-means Clustering method based on memory constraint) in Map phase and optimal scheduling (using Oppositional Grey Wolf Optimization algorithm) in reduce phase. Here, the scheduling is maximized to reduce the makespan, cost and to raise the system utilization.
    Keywords: Oppositional Grey Wolf Optimization algorithm; Fuzzy C-means Clustering; MapReduce; Task Prioritization; Virtual Machine Allocation; Apache Spark Distributed file System (SDFS).

  • An efficient load balancing scheduling strategy for cloud computing based on hybrid approach   Order a copy of this article
    by Mohammad Oqail Ahmad, Rafiqul Zaman Khan 
    Abstract: Cloud computing is a promising paradigm that is widely used in both academia and industry. Dynamic demand for resources by users is one of the prime goals of scheduling process of task in cloud computing. Task scheduling is NP-hard problem which is responsible for allocating the task to VMs and maximizing their utilization while minimizing the total task execution time. In this paper, the authors propose a load balancing scheduling strategy, Hybridization of RALB method using the PSO technique inspired by the honeybee behaviour proposed named as (PSO-RALB). This strategy optimize the results and perform scheduling based on resource aware load balancing scheme. The foraging behaviour of the honey bee optimization algorithm is utilized to balance load across VM and resource aware is used to manage the resources. The computational results show that proposed scheme minimize the makespan time, total processing time, total processing cost and the degree of imbalance factor when compared with existing techniques PSO standard and PSO based Load Balancing (PSO-LB) algorithms.
    Keywords: Cloud computing; Load balancing; Honey bee foraging; Particle Swarm Optimization; PSO-RALB Algorithm; Degree of imbalance;.

  • End-to-End SLA Management in Federated Clouds   Order a copy of this article
    by Asma Al Falasi, Mohamed Adel Serhani, Younes Hamdouch 
    Abstract: Cloud services have always promised to be available, flexible, and speedy. However, in some circumstances (e.g. drastic changes in application requirements) a Cloud provider might fail to deliver such promises to their distinctly demanding customers. Cloud providers have a constrained geographical presence and are willing to invest in infrastructure only when it is profitable to them. Cloud federation is a concept that collectively combines segregated Cloud services to create an extended pool of resources for Clouds to competently deliver their promised level of services. This paper is concerned with studying the governing aspects related to the federation of Clouds through collaborative networking. We propose a network of federated Clouds, CloudLend, that creates a platform for Cloud providers to collaborate, and for customers to expand their service selections. We also define and specify a service level agreement (SLA) management model in order to govern and administer the relationships established between different Cloud services in CloudLend. We define a multi-level SLA specification model to describe QoS terms, in addition to a game theory-based automated SLA negotiation model. We also define an adaptive agent-based SLA monitoring model. Formal verification proved that our proposed framework assures customers with maximum optimized guarantees to their QoS requirements, in addition to supporting Cloud providers to make informed resource utilization decisions. Additionally, simulation results demonstrate the effectiveness of our SLA management model.
    Keywords: Cloud Computing; Federated Clouds; SLA Management; Game Theory; QoS Requirements.

  • A Cloud Data Collection Platform for Canine Behavioral Prediction using Objective Sensor Data   Order a copy of this article
    by Zachary Cleghern, Marc Foster, Sean Mealin, Evan Williams, Timothy Holder, Alper Bozkurt, David Roberts 
    Abstract: Training successful guide dogs is time and resource intensive, requiring copious professional and volunteer labor. Even among the best programs, dogs are released with attrition rates commonly at 50\%. Increasing success rates enables non-profits to meet growing demand for dogs and optimize resources. Selecting dogs for training is a crucial task; guide dog schools can benefit from both better selection accuracy and earlier prediction. We present a system aimed at improving analysis and selection of which dogs merit investment of resources using custom sensing hardware and a cloud-hosted data processing platform. To improve behavioral analysis at early stages, we present results using objective data acquired in puppy behavioral tests and the current status of an IoT-enabled ``Smart Collar'' system to gather data from puppies while being raised by volunteers prior to training. Our goal is to identify both puppies at risk and environmental influences on success as guide dogs.
    Keywords: Cloud Computing; Canine Behavior; Behavioral Prediction; Sensor Data; Internet-of-Things; Machine Learning; Wearable Computing; Guide Dogs.

  • Evaluation and Selection of Cloud deployment models using Fuzzy Combinative Distance-Based Assessment   Order a copy of this article
    by Nandini Kashyap, Rakesh Garg 
    Abstract: Cloud computing (CC) is an innovative technology that is completely transforming the way of individuals to collect, share and approach their data files. Although, CC technology provides many benefits such as elasticity, resource pooling and on-demand services, yet there arise various issues and challenges for the successful implementation of this technology. Evaluation and selection of cloud deployment models (CDMs) are one of challenges highly faced by the cloud practitioners. The present study addresses the CDMs evaluation and selection problem in the education sector by modeling it as a multi-criteria decision making (MCDM) problem. To solve this selection problem, a hybrid MCDM approach, namely, Fuzzy-Combinative Distance-based Assessment (Fuzzy-CODAS) is proposed. The proposed approach works on the calculation of desirability index value for each of the alternatives based on Euclidean and Hamming distances from the negative ideal solution. Finally, the alternatives are ranked on their desirability index values. The alternative having maximum value of desirability index is placed at top position, whereas alternative with minimum value is placed at the last position.
    Keywords: Cloud Computing; Cloud deployment models; Multi-criteria decision making; Fuzzy- Combinative distance based assessment; Academic Organization.

  • Performance evaluation & Reliability analysis of predictive hardware failure models in Cloud platform using ReliaCloud-NS   Order a copy of this article
    by Rohit Sharma 
    Abstract: Cloud Computing Systems at the present time established as a promising trend in providing the platform for coordinating large number of heterogeneous tasks and aims at delivering highly reliable cloud computing services. It is most necessary to consider the reliability of cloud services and timely prediction of failing hardware in Cloud Data Centre's so that it ensures correct identification of the overall time required before resuming the service after the failure. In this paper reliability of two recently introduced predictive hardware failure models has been analysed, first model is on the basis of two open data sources i.e. Self-Monitoring And Reporting Technology (SMART), Windows performance counters and second model is based on FailureSim which is a neural networks based system for predicting hardware failures in data centres is done over our carefully designed two Test Cloud simulations of 144 VM's & 236 VM's. The results are thoroughly compared and analysed with the help of ReliaCloud- NS that allow researchers to design a CCS and compute its reliability.
    Keywords: Cloud Computing System (CCS); Virtual Machines (VM); Monte Carlo Simulation (MCS); Neural Networks; Annual Failure Rate (AFR); Self-Monitoring And Reporting Technology (SMART).

  • Efficient Multi-Level Cloud based Agriculture Storage Management System   Order a copy of this article
    by Kuldeep Sambrekar, Vijay Rajpurohit 
    Abstract: Attaining good agriculture productivity aid countries Gross Domestic Product (GDP) growth. Guarantying food security across globe possesses huge challenges due global warming resulting unpredictable weather and shrinking natural resources. As a result, use of Data Analytic (DA), and Internet of Things (IoT) has been employed by various agencies such as remote sensing forecasting and GIS Technology to build efficient agriculture management system. Cloud computing platform has been adopted for storing and accessing these data remotely. However, it incurs cost overhead for storing and assessing large data. Multi-cloud platform is adopted, however these models are not efficient as it incurs latency and does not provision fault tolerance guarantee. For overcoming these research challenges, this work presents Efficient Multi-Level Cloud based Agriculture Storage Management System (EMLC-ASMS). The outcome shows EMLC-ASMS attain significant performance over existing model in terms of computation cost, and latency.
    Keywords: cloud based agricultural storage management;multi-level cloud storage;cloud storage optimization;multi-cloud storage;efficient hierarchical cloud based storage mechanism.

  • Towards an Efficient and Secure Computation over Outsourced Encrypted Data using Distributed Hash Table   Order a copy of this article
    by Raziqa Masood, Nitin Pandey, Q.P. Rana 
    Abstract: On-demand access to outsourced data from anywhere has diverted data owners' mind to store their data on the cloud servers instead of standalone devices. Security, privacy, and availability of data are still the major concerns that need to be addressed. A quick overcome for the users from these issues is to encrypt their data with their keys before uploading it to the cloud. However, computing over encrypted data still remains to be highly inefficient and impractical. In this paper, we propose an efficient and secure data outsourcing with the distribution of servers using a distributed hash table mechanism. It helps to compute over the data from multiple owners encrypted using different keys, without leaking the privacy. We observe that our proposed solution has less computation and communication cost from other existing mechanisms while is free from a single point of failure.
    Keywords: Distributed Hash Table; Data Outsourcing; Peer-Proxy Re-encryption; Privacy; Security.

  • A Correlation based Investigation of VM Consolidation for Cloud Computing   Order a copy of this article
    by Nagma Khattar, Jaiteg Singh, Jagpreet Sidhu 
    Abstract: Virtual machine consolidation is of utmost importance in maintaining energy efficient cloud data centers. Tremendous amount of work is listed in literature for various phases of virtual machine consolidation (host underload detection, host overload detection, virtual machine selection and virtual machine placement). Benchmark algorithms proposed by pioneer researchers always cater as a base to develop other optimised algorithms. It seems essential to understand the behaviour of these algorithms for VM consolidation. There is a lack of analysis on these base techniques which otherwise can lead to more computationally intensive and multidimensional solution. The requirement to crucially investigate behaviour of these algorithms under various tunings, parameters and workloads is the need of the hour. This paper addresses the gap in literature and analyses the characteristics of these algorithms in depth under various scenarios (workloads, parameters) to find the behavioural patterns of algorithms. This analysis also helps in identifying strength of relationship and correlation among parameters. Future research strategy to target the VM consolidation in cloud computing is also proposed.
    Keywords: VM consolidation; host underload detection; host overload detection; virtual machine selection; virtual machine placement; cloud computing.

  • A Case Study On Major Cloud Platforms Digital Forensics Readiness - Are We There Yet?   Order a copy of this article
    by AMEER PICHAN, Mihai Lazarescu, Sie Teng Soh 
    Abstract: Digital forensics is a post crime activity, carried out to identify the culprit responsible for the crime. The forensic activity requires the crime evidence that are typically found in a log that stores the events. Therefore, the logs detailing user activities are a valuable and critical source of information for digital forensics in the cloud computing environment. Cloud service providers (CSPs) usually provide logging services which records the activities and events with varying level of details. In this work, we present a detailed and methodological study of the logging services provided by three major CSPs, i.e., Amazon Web Services, Microsoft Azure and Google Cloud Platform, to elicit their forensic compliance. Our work aims to measure the forensic readiness of the three cloud platforms using their prime log services. More specifically, this paper (i) proposes a systematic approach that specifies the cloud forensic requirements; (ii) uses a generic case study of crime incident to evaluate the digital forensic readiness. It shows how to extract the crime evidence from the logs and validate them against a set of forensic requirements; (iii) identifies and quantifies the gaps which the CSPs failed to satisfy.
    Keywords: Cloud Computing; Cloud forensics; Cloud log; Evidence; Forensic artifacts; Digital investigation; Digital forensics.

  • A Survey of High School Students' Usage of Smartphone in Moroccan Rural Areas   Order a copy of this article
    by Mourade Azrour, Jamal Mabrouki, Azidine Guezzaz, Yousef Farhaoui 
    Abstract: In the last decade, the number of students owning smartphones is rising very rapidly. Therefore, this subject is new attractive of researchers, which trying to explain the impact of using smartphones in school environment. The aim of our study is to offer statistical data about using smartphone in Moroccan neglected countryside. By using interviewing method, we have got the different students usage of smartphone. We have found that the most usage of smartphones is social web, internet and music. In the contrary, the phone is used for education finalities by a few numbers of students.
    Keywords: Smartphone; Moroccan student; social web; new technology; education; school.

  • Autonomic Scalability Control for Cloud Workloads with Bayesian Network   Order a copy of this article
    by Sanjay Singh, Hari Singh 
    Abstract: Cloud Computing facilitates access to Infrastructure, Platform, and Software to clients over the Internet, on-demand. Clients run applications on Cloud which are supported by Virtual Machines (VMs) running on top of Physical Machines (PM). Workload traffic coming to the cloud varies over time. To meet these changing workload demands the VMs must be scaled up and scaled down automatically to ensure that the Service Level Agreement (SLA) parameters are not violated and clients Quality of Service (QoS) is maintained. This auto-scaling can be realised with a Machine Learning (ML) technique Bayesian Network (BN). In this article we propose a framework for autonomic scalability of cloud resources. The framework takes cloud data centre management dataset, selects SLA parameters of choice, discretises data of selected features, learns structural dependencies between these features and draws a BN, learns parameters, validates model, and after that makes decisions to either scale up or scale down on the basis of predictive and diagnostic capabilities of the BN model. The results achieved after evaluation are logical and consistent as prediction of workload demands and diagnosis of under utilization of cloud resources is done with sufficient accuracy.
    Keywords: Cloud Computing; Scalability; Bayesian Network; Cloud Workload.

  • A Discovery and Selection Protocol for Decentralized Cloudlet Systems   Order a copy of this article
    by Dilay Parmar, Padmaja Joshi, Udai Pratap Rao, A. Sathish Kumar, Ashwin Nivangune 
    Abstract: Cloudlets help in overcoming latency issue of clouds in mobile cloud computing to offload the computing tasks. Communication protocols are important part of the implementation of cloudlet based systems for the Mobile Cloudlet-Cloud environment. In this work, an approach for communication between entities in a decentralized cloudlet based systems is proposed. For that purpose, a cloudlet discovery protocol which is used for discovering cloudlets in Wi-Fi vicinity of Mobile Devices is proposed. A selection algorithm for selecting the suitable cloudlet from available discovered cloudlets is also proposed. Our proposed selection algorithm uses infrastructure specific criterion for selection decision, which makes the algorithm more generic to use.
    Keywords: Cloudlet; Mobile Cloud Computing; Discovery; Selection.

  • Major Drivers for the Rising Dominance of the Hyperscalers in the Infrastructure as a Service Market Segment   Order a copy of this article
    by Sebastian Floerecke, Christoph Ertl, Alexander Herzfeldt 
    Abstract: The rapidly growing worldwide market for Infrastructure as a Service (IaaS) is increasingly dominated by four hyperscalers Alibaba, Amazon Web Services (AWS), Google and Microsoft. On the flip side, the market share and number of small and medium-sized regional IaaS providers have been declining steadily over the past years. Astonishingly, this fight for market shares has been largely neglected by the research community so far. Against this background, the goal of this study is to identify the major drivers for this market development. To this end, 18 exploratory expert interviews were conducted with high-ranking employees of various successful regional IaaS providers in Germany. The results indicate that the central driver is the significant lower price of the hyperscalers offerings. Beyond that, eight additional important drivers, such as market presence, innovative strength, amount of financial and human resources and high and global availability as well as high user experience of the IaaS services, have been identified. This study sheds light on the IaaS market and opens up and supports future in-depth investigations of this duel. Regional IaaS providers can use these insights to unravel the IaaS market conditions in general and to better understand the decisive strengths of the hyperscalers in particular. Based on this knowledge, regional IaaS providers are enabled to develop strategies and business models for counteracting or at least decelerating the hyperscalers growing dominance.
    Keywords: Cloud Computing; Infrastructure as a Service (IaaS); Business Models; Hyperscalers; Regional IaaS Providers; Exploratory Expert Interviews; Theory for Explaining.

  • Modeling of a cloud platform via M/M1+M2/1 queues of a Jackson network   Order a copy of this article
    by Sivasamy Ramasamy, Paranjothi N 
    Abstract: Modeling of a cloud platform that can provide the best QoS (Qualityrnof Service) to minimize the average response times of its clients is investigatedrnvia an open Jackson network. Compact expressions for the input and outputrnparameters and measures of the proposed model are presented. Designing ofrnthe model involves the performance measures of M/M1+M2/1 queues with a K - policy.rnThis new cloud system is able to control virtual machines dynamically andrnto implement its operations to promote effectiveness in most of the commercialrnapplications.rn
    Keywords: Cloud computing; Open Jackson network; M/M/1 queue; Response time and Quality of Service.

  • Towards P2P Dynamic-Hash-Table based Public Auditing for Cloud Data Security and Integrity   Order a copy of this article
    by Raziqa Masood, Nitin Pandey, Q.P. Rana 
    Abstract: Cloud storage is the most demanded feature of cloud computing to provide outsourced data on-demand for both organizations and individuals. However, users are in a dilemma to trust over the cloud service providers (CSPs) regarding whether privacy is preserved, integrity is maintained, and security is guaranteed, towards the outsourced data. Therefore, it requires to develop an efficient auditing technique to provide confidence upon the data present in cloud storage. This article proposes a peer-to-peer (P2P) public auditing scheme to audit outsourced data using a dynamic hash table (DHT) to strengthen the users' trust, confidence, and availability over the outsourced data. Each DHT maintains the information of outsourced data, which helps the auditors to provide safety and integrity while auditing the data. Moreover, these auditors are organized into a structured P2P to accelerate the auditing along with the auditor's availability. Thus, the proposed scheme overcomes from a single point of failure. The computation cost and communication cost of our proposed protocol are compared with the existing methods using pairing-based cryptography (PBC) library, and it found to be an effective solution for public auditing on outsourced data.
    Keywords: Cloud Computing; Dynamic Hash Table; Outsourced Data Storage; Peer-to-Peer; Privacy; Public Auditing.

Special Issue on: ICBDSDE'19 Cloud Computing for Smart Digital Environment

  • Peer-to-peer Storage Engine for Schemaless Immutable Data   Order a copy of this article
    by Jose Ghislain Quenum, Alexander Brown Shipena 
    Abstract: In this paper, we present TaYo, a peer-to-peer storage engine explicitly designed for immutable data. We argue that although most storage engines cater for immutability, they generally introduce many more functions, rendering the engines complex and sometimes inefficient. Besides, most storage engines rely on the underlying file system(s) to manage the data on the actual storage medium. Here we advocate for and demonstrate a storage engine designed exclusively for immutable data that bypasses the file system during the storage. TaYo follows content-addressable storage (CAS) approach using Cuckoo hashing to generate a hash of the content that then serves as its identity. In TaYo, we trimmed the I/O operations to the basic two I/O operations for a storage engine: read and write. To write data to TaYo, we split it into eight (8) chunks, record the structure in a separate index and assign the chunks to worker processes that write concurrently. Each chunk is replicated twice (three (3) copies in total). When the write operation completes, the identifier is returned to the client application. To read data from TaYo, the client has to provide the identifier which the index uses to locate the chunks. For each chunk, only one replica is requested to pull the chunk. Thereafter, all chunks are assembled and the data transferred back to the client. TaYo uses a semi-active replication technique, a blend of active and passive replication while storing the data. It uses a consensus protocol built on top of Raft to guarantee consistency among the replicas.
    Keywords: Storage Systems; Storage Engines; Data Management; Peer-to-Peer; Immutable Data; Content-Addressable Storage.

  • User Arrival Rate dependent Profit Maximization of Web Application deployment on Cloud   Order a copy of this article
    by N. Neelima, B. Basaveswarrao, K. Gangadhara Rao, K. Chandan 
    Abstract: The user arrival rate dependent profit maximization is derived for Cloud Service Provider (CSP) when Web Applications are deployed on the Cloud for various number of instances of VMs operated using multi server queueing model. For any Web Application deployment on Cloud to get maximum profit with perfect management of auto scaling and perfect choosing of user charge according to the dynamic changes of user arrival rates is necessary. This paper is to find the profit maximization with user arrival rate , because many CSP used built in tools for auto scaling where there is no influence mechanisms on user arrival rates .In view of the dynamical changes of user behavior ,interests , necessities and attraction of the charges ,the user request rate is independent of the configurable parameters like buffer size , number of VMs , and speed of the VM. There is a need to investigate the influence of user arrival rate for profit maximization for CSP. To reach this objective the finite multi server profit queueing model is adopted and derived maximum profit through partial derivative with combination of bisection search method. Then sensitive analysis of user charges based on optimum user arrival rate for maximization of profit is processed. Finally the supporting numerical illustration is carried out and results are presented.
    Keywords: Cloud Computing; User arrival rate; Profit Optimization; User charge; SLA.

  • An Improved Pricing Algorithm for Infrastructure as a Service Clouds   Order a copy of this article
    by Seyyed-Mohammad Javadi-Moghaddam, Asieh Andarzgoo, Mohsen Saberi 
    Abstract: Marketing in cloud systems enables users to trade and share resources. For the sales of services, Client applications and service providers negotiate to make a Service Level Agreement. Offering prices in the negotiation of services become one that is challenging. A federal cloud is an efficient approach of recent interest to better balance risk sharing between services provider and customer. This work presents a new algorithm to increase service provider revenue and reducing user costs simultaneously. The auction of remaining time spent on resources and interactions between federal clouds increases the profits of clouds, the number of successful requests, and reduces users' costs. The simulation results confirm the expectations of the proposed approach.
    Keywords: Federal cloud; Pricing model; Service quality; Service level agreement.

  • Versioning Schemas of JSON-based Conventional and Temporal Big Data through High-level Operations in the TJSchema Framework   Order a copy of this article
    by Zouhaier Brahmia, Safa Brahmia, Fabio Grandi, Rafik Bouaziz 
    Abstract: ?JSchema is a framework for managing time-varying JSON-based Big Data, in temporal JSON NoSQL databases, through the use of a temporal JSON schema. This latter ties together a conventional JSON schema, which is a standard JSON Schema file, and its corresponding temporal logical and temporal physical characteristics, which are stored in a temporal characteristic document. Conventional JSON schema and temporal characteristics could evolve over time to satisfy new requirements of the NoSQL database administrator (NSDBA) or to comply with changes in the modelled reality. Accordingly, the corresponding temporal JSON schema is also evolving over time. In our previous work (Brahmia et al., 2017, 2018b, 2019a), we have proposed low-level operations for changing such schema components. However, these operations are not NSDBA-friendly as they are too primitive. In this paper, we deal with operations that help NSDBAs to maintain these schema components, in a more user-friendly and compact way. In fact, we propose three sets of high-level operations for changing the temporal JSON schema, the conventional JSON schema, and the temporal characteristics. These high-level operations are based on our previously proposed low-level operations. They are also consistency-preserving and more helpful than the low-level ones. To improve the readability of their definitions, we have divided these new operations into two classes: basic high-level operations, which cannot be defined through other basic high-level operations, and complex ones.
    Keywords: Big Data; NoSQL; JSON; JSON Schema; TJSchema; Conventional JSON schema; Temporal JSON schema; Temporal logical characteristic; Temporal physical characteristic; Schema change operation; Schema versioning; temporal databases.

  • Versioning Temporal Characteristics of JSON-based Big Data via the ?JSchema Framework   Order a copy of this article
    by Safa Brahmia, Zouhaier Brahmia, Fabio Grandi, Rafik Bouaziz 
    Abstract: Several modern applications, which exploit Big Data (e.g., Internet of Things and Smart Cities), require the analysis of a complete history of the changes performed on these data which may also include modification to their schemas (or structures). Although schema versioning has long been advocated to be the best solution to cope with this issue, there are no currently available technical solutions, provided by existing Big Data management systems (especially NoSQL DBMSs), for handling temporal evolution and versioning aspects of Big Data. In (Brahmia et al., 2016), for a disciplined and systematic approach to the temporal management of JSON-based Big Data in NoSQL databases, we have proposed the use of a framework, named ?JSchema (temporal JSON Schema). It allows the definition and validation of temporal JSON documents that conform to a temporal JSON schema. A ?JSchema schema is composed of a conventional (i.e., non-temporal) JSON schema annotated with a set of temporal logical and temporal physical characteristics. Moreover, since these two components could evolve over time to respond to new applications requirements, we have extended ?JSchema, in (Brahmia et al., 2017), to support versioning of conventional JSON schemas. In this work, we complete the picture by extending our framework to also support versioning of temporal logical and physical characteristics. In fact, we propose a technique for temporal characteristics versioning, and provide a complete set of low-level change operations for the maintenance of these characteristics; for each operation, we define its arguments and its operational semantics. Thus, with the proposed extension, ?JSchema will provide a full support of temporal versioning of JSON-based Big Data at both instance and schema levels.
    Keywords: Big Data; NoSQL; JSON; JSON Schema; ?JSchema; Conventional JSON schema; Temporal JSON schema; Temporal logical characteristic; Temporal physical characteristic; Schema change; Schema versioning.

  • Analysing Knowledge in Social Big Data   Order a copy of this article
    by Lejdel Brahim 
    Abstract: Big data has become an important issue for a large number of research areas such as data mining, machine learning, computational intelligence, the semantic Web, and social networks. The combination of big data technologies and traditional machine learning algorithms has generated new and interesting challenges in other areas as social media and social networks. These new challenges are focused mainly on problems such as data processing, data storage, data representation and visualizing data. In this paper, we will present a new approach that can extract entities and their relationships from social big data, allowing for the inference of new meaningful knowledge. This approach is a hybrid approach of multi-agent systems and K-means algorithm.
    Keywords: K-means; Multi-Agent Systems; Big data; data mining; social networks.

  • Developing a Smart Learning Environment for the Implementation of an Adaptive Connectivist MOOC Platform   Order a copy of this article
    by Soumaya EL EMRANI, Ali EL MERZOUQI, Mohamed KHALDI 
    Abstract: A pedagogical object can refer to any pedagogical component that can be used in the learning process. It could be a text, an image, a video, a web page, etc. Personalizing the pedagogical content can be considered crucial. So, this can declare the need to find collaboration agreements between the pedagogical contents specialists, in order to get the collaborative development or the pedagogical content reuse. Consequently, E-learning standards and specifications give the solution, with possibilities of reuse, interoperability and customization.rnSince the main goal of our research is providing an adaptive cMOOC, this requires to adjusting the pedagogical content to each learner profile. So, an adaptive learning design has to present different learning strategies based on process of data analytics that include previous and current experiences, learning styles and learner profile.rnAs a part of our implementation, this structural design can be made by using some machine learning algorithms in parallel of the IMS standard and related specification.rn
    Keywords: Pedagogical Object; MOOC; cMOOC; Adaptive cMOOC; Machine Learning; Intelligent Platform; Pedagogical Content; IMS.

  • An Effective Cooperative Aligner to Resolve Multiple Sequence Alignment Problem   Order a copy of this article
    by Lamiche Chaabane 
    Abstract: In this research work, we propose a new cooperative aligner based on metaheuristics to find an approximate solution to the multiple sequence alignment (MSA) problem. The developed approach named HPSOSA apply in the first stage the particle swarm optimization (PSO) with a crossover operator as a move mechanism for each particle. In the second stage, simulated annealing is incorporated in order to improve worst solutions in the population and to help HPSOSA to escape from local optimum alignment. Simulation results on BaliBASE benchmarks have demonstrated the capability of the proposed method to obtain better results for the MSA problem compared to those produced by some literature works in the same field.
    Keywords: Cooperative aligner; multiple sequence alignment; SA; PSO; BaliBASE benchmarks.

  • Data openness for efficient E-governance in the age of Big data   Order a copy of this article
    by Safae Sossi Alaoui, Yousef Farhaoui, Brahim Aksasse 
    Abstract: The data revolution in recent years has led governments around the world to realize the different benefits of communicating and opening data over their information and communication technologies (ICT) in behalf of their citizens. Indeed, the need for data openness is vitally important for governments, research community and businesses, especially in the era of Big data, which characterized by the increase in volume of structured and unstructured data, the speed at which data is generated and collected and the variety of data sources; this is known as the three Vs. Therefore, Big data has changed the ways governments manage and support their policies towards their digital data and tend to make it more open and accessible. This open data movement has been adopted by several countries thanks to its multiple benefits in different domains to uncover hidden patterns and improve e-governance effectiveness in terms of cost, productivity and innovation. Through using machine learning algorithms, this paper demonstrates that governments applying open policies are the same as those who get a high score in terms of human development index. To fulfil papers objectives, the powerful statistical tool named IBM SPSS Statistics is used to accomplish the entire analytical process.
    Keywords: Open data; E-governance; Big data; regression algorithms.

  • Cloud Computing Services, Models and Simulation Tools   Order a copy of this article
    by Saad-Eddine CHAFI, Younes Balboul, Said Mazer, Mohammed Fattah, Moulhime El Bekkali, Benaissa BERNOUSSI 
    Abstract: Nowadays, Cloud computing is an internet-based platform that renders various computing services like hardware, software and other computer related services remotely. As the adoption and deployment of cloud computing grow, it is critical to evaluate the performance of cloud environments. Cloud simulators are required for cloud systems testing to decrease the complexity and separate quality concerns. Several cloud simulators have been particularly developed for performance evaluation of cloud computing environments. We accomplished comparative analysis of some cloud simulators based on varied parameters. The objective is to offer insights for each analysis , given their features, functionalities and guidelines on the way to researchers on their desire of preference of suitable tools.
    Keywords: Cloud computing; CloudSim; CloudAnalyst; GreenCloud; CloudReports; iCanCloud;.

  • Semantic integration of Moroccan Cultural Heritage using CIDOC CRM: case of Dr   Order a copy of this article
    by FOUAD NAFIS, Badraddine AGHOUTANE, Ali YAHYAOUY 
    Abstract: This paper presents the approach adopted and the results obtained as a part of a project aiming at publishing the data of the Moroccan Cultural Heritage (CH) of the Dr
    Keywords: Cultural Heritage; Ontology; Preservation; Drâa-Tafilalet; CIDOC CRM; Semantic; RDF.

  • Efficient skin cancer diagnosis based on Deep learning approach using lesions skeleton   Order a copy of this article
    by Filali Youssef, Sabri My Abdelouahed, Aarab Abdellah 
    Abstract: Skin cancer is one of the most threatening cancer all over the world. The early detection of this skin cancer could help dermatologists in saving patients lives. For that, a Computer-aided diagnosis is used for an early evaluation of this kind of cancer. Skeletons of the lesions are an effective representation making it possible to properly describe the shape and size of lesions and thus used to classify them effectively as melanoma or non-melanoma. Therefore, the proposed idea in this paper is to use the lesions skeleton as Deep Learning entry instead of the original images. Experimentation shows that this idea can both increase the classification rate, in comparison with recent approaches from the literature, and thus reduce the number of layers used to create the deep network. The accuracy of our proposed approach on the well-known ISIC challenge and Dermoscopy datasets is 95%, showing the effectiveness of our system.
    Keywords: Skin cancer; melanoma; deep learning; convolutional neural network (CNN); skeleton.

  • A Deadline Based Elastic Approach for Balanced Task Scheduling in Computing Cloud Environment   Order a copy of this article
    by K. Jairam Naik 
    Abstract: Cloud is a pay as you go servicing environment where parallelized virtual resources are provisioned to the users based on the quality of service requirements of their tasks. In such environment, it is demanded to assign enough number of virtual resources for executing the user tasks within given deadline. Also, effective management of load among resources is a challenging task. Efficient load management helps to reduce the Make-span time, increase the tasks execution rate and makes optimized resource utilization. There are several approaches available at present for task allocation and workload balancing among the Virtual Machines (VM) in the cloud. But, most of the approaches were concentrating on increasing the virtual machines statically if required and distributing the load randomly to them. This will cause inefficient resource utilization and also makes some task to miss deadline. Most of the existing works have not concentrated on an emerging feature like elasticity for dynamic Provisioning or Deprovisioning of VMs while allocating the workload among cloud resources. Management of variable workload on cloud resources is essential when the numbers of user tasks to avail cloud resources or the numbers of resource available is varying dynamically. Hence, there is a necessity of introducing elasticity-based scheduling and workload balancing for cloud. The proposed elasticity-based load balancing approach (DL_ELBalTSch) considers the percentage of VM resources overloaded or underloaded as a supporting threshold at that movement and takes the decision either to raise or cut the VMs. This approach is competent enough for successful execution of tasks on variable number of resources instead of failing to meet established deadline. The proposed approach diminishes the Makespan time of user task and improves the successful execution ratio compared to other approaches. Extensive simulations are performed on a java-based simulation toolkit called CloudSim and obtained higher task execution ratio, lower makespan time and task execution cost when compared with existing approaches.
    Keywords: Computing cloud; Scheduling; Workload balancing; Deadline; Virtual Machines; Resources; Elastic Scaling; Utilization; Makespan Time; Provisioning; Deprovisioning; Execution ratio.

  • Tourism Recommender Systems: An overview   Order a copy of this article
    by Khalid AL FARARNI, Badraddine AGHOUTANE, Ali YAHYAOUY, Jamal RIFFI, Abdelouahed SABRI 
    Abstract: The amount of information available on the World Wide Web and its number of users has increased considerably over the past decade. All this information can be particularly useful for users who are planning to visit an unknown destination. Information on travel destinations and their associated resources, such as hotels, restaurants, museums or events, etc., is commonly sought by tourists in order to plan a trip. However, the list of possibilities offered by Web search engines (or even specialized tourist sites) can be overwhelming. Evaluating this long list of options is very complex and time consuming for tourists to choose the one that best suits their needs. Computer techniques have been developed to facilitate this search as well as the extraction of relevant information. The ones we focus on in this article are the recommendation systems. rnThe purpose of this paper then is to provide a detailed and up-to-date review of the most commonly used profiling techniques and recommendation approaches in the field of tourism, with an emphasis on content-based and collaborative approaches.
    Keywords: Tourism Recommender Systems; Collaborative Filtering; Content-Based Filtering; Hybrid Recommender System; User/Item Profiling.

  • A Multidimensional-Multilayered Anomaly Detection in RFID-Sensor Integrated Internet of Things Network   Order a copy of this article
    by Adarsh Kumar 
    Abstract: Outlier detection in a single dimension is not enough to protect the network from known and unknown attacks. There is a strong need to apply multiple steps at multiple stages for combating these attacks. There are various approaches to protect the network from malicious activities and it is an ongoing process to fight against them from a multi-layers perspective parallel to networking layering models. This work has considered a multi-layered and multi-dimensional approach to protect the hierarchical mobile ad-hoc network (MANET) from known and unknown attacks. The proposed multilayered approach consists of ultralight, light and heavy computational overhead-based outlier detection approaches to combat the attacks. It has been observed that these approaches apply threshold as well as earning processes based mechanisms for fighting against the attacks. Further, hardware constraint is considered to identify these schemes as ultralight, light, or heavy. Simulation results show that variations of nodes from 10 to 5000 vary the cluster formation from 5 to 53 with an error rate of 0.4%.
    Keywords: Anomaly detection; active and passive attacks; QoS; performance; clustering; machine learning; threshold measurement; optimization.

  • Use of Internet of Things for Monitoring and Evaluation water's Quality: Comparative Study   Order a copy of this article
    by Jamal Mabrouki, Mourade AZROUR, Souad El Hajjaji 
    Abstract: Over the past decade, water resources have faced some challenges, including pollution, drought, etc. Thus, the monitoring of this vital resource becomes significant. On the other hand, the Internet of Things (IoT) has known a significant evolution nowadays; it is adopted in various fields in order to improve human life. In this paper, we present the results of our comparison study, that aim to review and compare between various proposed system for monitoring water quality using the Internet of Things technologies.
    Keywords: IoT;Internet of Things; water; monitoring; werless network.

  • Analysis and simulation of a Reverse Osmosis unit for producing drinking water in Morocco   Order a copy of this article
    by Maria BENBOUZID, Jamal Mabrouki, Mahmoud HAFSI, Souad El Hajjaji 
    Abstract: Seawater and brackish water desalination becomes an imperative solution to provide drinking water in Morocco as in similar countries facing water scarcity. Reverse osmosis process is now well-developed technology and currently dominating the desalination market. However, he problem with reverse osmosis and membrane filtration in general is membrane fouling due to accumulation of matter on membrane surface. Several parameters can be monitor to indicate membrane fouling such as the flow rate, the pressure drop, and the permeate conductivity. In this work, the desalination process is done on a salty surface water located in Middle Atlas of Morocco, characterized by a chloride content of 295 mg/L and a variable quality depending on the seasons. Actually, surface water composition depends on atmospheric deposition and rockwater interaction. Indeed, the monitoring of water river quality confirmed that the characteristics of the raw water are not stable according to weather conditions. The recorded measurements clearly show that the minimum value of conductivity was recorded during winter season due to the rainfall dilution process and increases during the summer season due to the evaporation of the water. The questioning of water quality variation over the seasons initiated to make then several simulations of the design of reverse osmosis system with two different water quality: The first quality is characterized by a conductivity of 1230
    Keywords: Modelling; Seasonal changes; Simulation; Reverse osmosis; Water treatment; Water salinity.

Special Issue on: Big Data Computing and Sustainable Cloud Communication Systems

  • An IoT based Secure Data Transmission in WBSN   Order a copy of this article
    by I. Karthiga, Sharmila Sankar 
    Abstract: Internet of Things (IoT) is deemed as the new age technology that is anticipated to be a blessing for human life. The basic conception of the IoT is to connect or give complete access to the Internet. Transmitting the information via the IoT with the maximal security is a vital process. Cryptography is one of the domains of Network Security, which is one such mechanism that helps the data transmission process to be secure enough over the wireless or wired channel and along with that, it gives confidentiality, authenticity, integrity of data and prevents repudiation. Here, a framework is developed for the secure transmission of data from the Wireless Body Sensor Network (WBSN) in the IoT environment. Initially, the sensors in the human body gather the data as of its signals. This data is then directed to the cloud through a gateway. The 3 stages which are to be implemented are a) Authentication, b) Security and c) Load Balance. In authentication, the 3 steps executed are i) registration, ii) login and iii) verification. The data is securely transmitted using the Optimized Elliptical Curve Cryptography (OECC). To allow multiple users to use the network, load balancing (LB) is done. This is executed using the KHLB (Krill Herd Load Balancing). The proposed OECC and KHLBs performance is analyzed by comparing them with existing methodologies regarding the performance measures say encryption time, decryption time, security level, packet loss ratio (PLR), end to end delay, along with throughput. The proposed encryption along with LB scheme achieves the best performance contrasted to other existing techniques regarding all performance measures.
    Keywords: Internet of Things; Wireless Body Sensor Networks; Optimized Elliptical Curve Cryptography; Krill Herd Load Balancing Algorithm; Authentication; Security.

  • Hybrid PSO-DE Algorithm Based Trust and Congestion Aware Cluster Routing Algorithm for MANET   Order a copy of this article
    by A. EMMANUEL P.E.O. MARIADAS, R. Madhanmohan  
    Abstract: Trust awareness, Mobility, link lifetime and efficiency in terms of energy were the problems linked with the Mobile Ad hoc Networks (MANET), the nodes can move un predictable depends upon the direction with the limited battery life results in better frequent changes in topology. Hence the attackers becomes the best for the packet delivery must be sufficient for the inside the router of the network. Some of the basic constrains were widely studied with an increases for the security lifetime for the network. The paper concentrate on the problem such as the lifetime, mobility defined for the efficiency in energy for the development of clustering based algorithm using the fitness value incorporated with the Hybrid PSO and differential algorithm for evaluation. Here the algorithm concentrate on the election of cluster head concentrate on the trust, life time , mobility, buffer and the energy remaining for the degree for the connectivity in the selection of nodes with the server of cluster head during the Hybrid PSODE for clustering algorithm. The proposed work may be extremely being intensively for the NS-3 network simulator, which incorporates with the other existing algorithms. Some results may be effectiveness for the proposed algorithm might be in terms of network life time, average life time, number of average clusters formation, average number of reclustering required with the energy consumption and the other parameter such as the packet delivery ratio.
    Keywords: Cluster Head; Fitness value; Energy efficiency; Trust; Life time; Mobility.

  • Kernel interpolation-based technique for privacy protection of pluggable data in cloud computing   Order a copy of this article
    by Manoj L. Bangare, Sarang A Joshi 
    Abstract: Recent technological revolution has been reported as the revolution of the cloud computing technology. The explosive availability of the unstructured data in the cloud has gained the attention of the researchers and the users store their data in the cloud without any right over controlling the data, causing the privacy concerns. Therefore, there is a need for the effective privacy protection techniques that assure the privacy of the user data in the cloud. Accordingly, this paper proposes a Kernel interpolation-based technique for preserving the privacy of the data in the cloud. Privacy and accuracy are the two factors assuring the privacy for the data, which are afforded using the proposed technique that uses the proposed Rider-Cat Swarm Optimization (R-CSO) algorithm for computing the Kernel interpolation coefficient, which is associated with affording the privacy in the cloud. The proposed Rider-Cat Swarm Optimization (R-CSO) algorithm is the integration of the standard Cat Swarm Optimization (CSO) in the standard Rider Optimization Algorithm (ROA). The analysis of the methods using the dataset from UCI machine learning repository reveals that the proposed method acquired the maximal accuracy and minimal database difference ratio (DBDR) of 80.552 % and 15.58%, respectively.
    Keywords: Cloud computing; Pluggable Data; privacy preservation; Interpolation; Optimization; Rider-Cat Swarm Optimization; DBWorld; Kernel interpolation-based; Termination; Rider Optimization Algorithm; Ciphertext-policy; R-CSO algorithm; Block diagram; Hash-Solomon code algorithm,.

  • Feature vector extraction and optimization for multimodal biometrics employing face, ear and gait utilizing artificial neural networks   Order a copy of this article
    by Haider Mehraj, Ajaz Hussain Mir 
    Abstract: Cloud Computing is the rapidly growing model for providing resources to users over internet. Numerous business establishments have adopted cloud computing environment as it has low upfront costs, is scalable and provides rapid deployment. Many consumers store their sensitive information on the cloud and as such there needs to be strong authentication mechanism in place so that only authorised users are able to access the cloud. Multimodal biometrics is an upcoming research area to explore for improving the security of cloud. In this work, a novel multimodal biometric fusion system using three different biometric modalities including face, ear, and gait, based on Speed-Up-Robust-Feature (SURF) descriptor along with Genetic Algorithm (GA) for enhanced cloud security is anticipated. Artificial neural network (ANN) is utilized as a classifier for each biometric modality. Our novel fusion process has been effectively tested by means of dissimilar images analogous to all subjects from three databases including AMI Ear Database, Georgia Tech Face Database along with the CASIA Gait Database. Because of these biometric traits, the anticipated method requires no significant user assistance and also can work from a long distance. Before going for the fusion, the SURF features are optimized using genetic algorithm and cross validated using artificial neural network. The evaluations are done on a publicly available database demonstrating the accuracy of the proposed system compared with the existing systems. It is observed that, the amalgamation of face, ear and gait gives better performance in terms of accuracy, precision and recall and fmeasure.
    Keywords: Cloud Computing; Biometric Fusion; Feature Vector; SURF; GA; ANN; precision; recall; kappa; accuracy; Fmeasure.

  • Green Factors of Referential Value based Software Component Repository   Order a copy of this article
    by Pradeep Kumar, Shailendra Narayan Singh, Sudhir Dawra 
    Abstract: Reference based green computing has different dimensions like time, cost, space etc. Time and space required by software system is dependent upon development process of the software and algorithm used during software development. Green parameters of the software are directly proportional to the space and time required to process the softwares. In the referential software development system, new dimensions are coming into picture such as length of networks used, technology adopted in the network systems and response time of the middleware. In this paper, all green parameters including new dimensions proposed in the referential software development process have been calculated. The proposed technique presents the mapping of addresses required to simulate referential software‟s in the cloud computing scenario
    Keywords: Referential software; Cloud computing; Green computing; Computer networks.

  • A Novel Approach for Merging Ontologies using Formal Concept Analysis   Order a copy of this article
    by Priya. Munusamy, Ch. Aswani Kumar 
    Abstract: : Ontologies are mainly used for knowledge sharing and also as a knowledge structure. Due to the rising nature of ontologies, the method of merging information in the corporate realm turns to be critical. In the existing methods, formal concept analysis does not provide an efficient pseudo-intent calculation and does not handle large context. The proposed technique focused the issue of ontology heterogeneity that blocks the ontology interoperability and proposed a novel algorithm called Advanced Formal Concept Analysis merge. The AFCA-Merge algorithm performs four phases to merge the given two ontologies. In the first phase, it obtains the perfect attribute for the matching object using decision tree and pseudo intent technique. In the second phase, the obtained results are warehoused in the linked list as a formal context. In the third phase, the perfect relationship among formal contexts from the linked list has been identified using backtracking techniques. Finally, the merging phase performs the merging between the identified relations. The experimental outcome shows that the AFCA-Merge provides 97% of precision, 82 % of recall and 89 % of accuracy which is better than the existing technique.
    Keywords: AFCA-Merge; Formal Concept Analysis; Formal Context; Ontology Merging.

  • Spectral and Spatial Features Based HSI Classification Using Multiple Neuron Based Learning Approach   Order a copy of this article
    by Venkatesan Rudhrakoti, Prabu Sevugan 
    Abstract: With the improvement of remote sensing application, hyper spectral images have been used in large number of applications. And lot of works have been done to extract the features from remote sensing and accurate learning for classify the classes. The spectral and spatial data of images have been allows to classify the results with improved accuracy. Fusion of spatial and spectral data is an actual way in improv-ing the accuracy of hyper-spectral image classification. In this work, we proposed spectral with spatial details based on hyper-spectral image classification method using neural network classifiers and using multi neurons based learning approach is used to classify the remote sensing images with specific class labels. The features may be supernatural and latitudinal data is extracted using boundary values using decision boundary feature extraction (DBFE). These extracted features are trained using convolutional neural networks (CNN) for improve the ac-curacy for labeling the classes. The methodology entails of training with adding regularizer towards the loss function recycled for train the neural networks. Guidance is done using various layers with additional balancing constraints to evade falling into local minima. In testing phase, classify each remote sensing image and avoid false truth map. Experimental results shows that improved accuracy in class specifica-tion rather than other state of art algorithms.
    Keywords: Hyper spectral imaging; Classification; Features extraction; Neural networks; Class labels.

  • Correlative Study and Analysis for Hidden Patterns in Text Analytics Unstructured Data using Supervised and Unsupervised Learning techniques   Order a copy of this article
    by E.Laxmi Lydia, S. Kannan, S.Suman Rajest 
    Abstract: Two-third of the data generated by the internet is unstructured text in thernform of Emails, audio, video, pdf files, word documents, text documents. Extraction ofrnthese unstructured text patterns using mining techniques achieve quick access tornoutcomes. Textual data available atonline contains different patterns and when thosernhuge incoming unstructured data enters into the system creates a problem whilernorganizing those documents into meaningful groups. This paper discusses documentrnclassification using supervised learning by focusing on the concept based algorithm andrnalso deals with the hidden patterns in the documents using unsupervised clusteringrntechnique and Topic-based Modeling for the analysis and improvement of systematicrnarrangement of documents by applying k-means and LDA algorithm. Finally, thisrnpresents the comparative study and importance of clustering than classification forrnunstructured documents.
    Keywords: Text Analytics; Concept Based method; Data Representation and Storage,rnLatent Dirichlet Allocation(LDA)Algorithm.

  • EFFECTIVE STORAGE OF GOODS IN A WAREHOUSE USING FARM OPTIMIZATION ALGORITHM   Order a copy of this article
    by Sathish Kumar Ravichandran 
    Abstract: Effective organization of a warehouse's incoming goods section is important for its productivity as ensuring efficient shelving systems. When the incoming goods section is not properly configured, this almost automatically causes major interruptions throughout the subsequent storage phase. For effective storage of goods in warehouse Farm Optimization Algorithm (FOA) is proposed. The efficacy of the proposed approach was demonstrated using BR data sets and it is compared with different optimization algorithms. From this experiment, it is noted that the suggested FOA fulfills the objective of efficient arrangement of goods in the warehouse. The order in which the goods are placed into the warehouse is also noted to be ideal than other competitive optimization algorithms.
    Keywords: Effective organization; Warehouses; Farm Optimization algorithm; Efficient arrangement; Optimization algorithm.

  • Hybrid Swarm Intelligence for Feature Selection on IoT based Infrastructure   Order a copy of this article
    by Nallakaruppan Kailasanathan, Senthilkumaran Ulaganathan 
    Abstract: Swarm Intelligence techniques are deployed to estimate the fitness on the search spaces and estimates the optimization. Since the evolution of the Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) optimization problems and complex real-world problems were solved with ease. There is a need to enhance the performance of optimization and exploration of the search spaces with the contributions of esteemed Seyedali Mirjalili. He invented the moth-flame optimization. This algorithm provided best solution as the iterations increase. The fittest Moth-Flame combinations were made up and best positions of the flames reduced in every iteration and in the final iteration provided the best Moth-Flame combination. There is a conce for local-minima for Moth- Flame optimization and convergence rate of Moth-flame is more it may skip the global optimal search. The combination of the Simulated Annealing (SA) and the Moth-Flame Optimization (MFO) provides a solution to local minima, increases the diversity of the population and increases the exploration, reduces the convergence rate to increase the performance of MFO to reach global optima and at last increases the performance of MFO. This is the first attempt of this hybrid swarm intelligent on IoT (Inte et Of Things) databases and through which we select the features (attributes) that impact on the decision-making process of the IoT.
    Keywords: IoT (Internet of Things); Moth-Flame Optimization (MFO),rnSimulated Annealing (SA); KNN Classification (K-Nearest NeighbourrnClassification); Genetic Algorithm (GA); Particle Swarm Optimization (PSO).

  • Development of a network packet sniffing tool for Internet Protocol generations   Order a copy of this article
    by Ruwaidah F. Albadri 
    Abstract: Packet sniffing is a way to take advantage of each packet as it flows across the network. One of the most complex problems that face the network administrators is the network analyzing. The information provided by existing tools for network traffic analysis is very small. However, they are considered enormous data if they were all stored for later analysis which make it difficult to be analyzed or even stored. This paper aims to propose a sniffing tool to capture the packets of both IPv4 and IPv6. The captured packets can be stored temporarily in order to get some statistics about the network like the port that is most frequent used for both source and destination. A sniffing tool is proposed to capture and analyze the network in simplest way with no wasting storage. The proposed tool works to access the captured packets and get the information from it by using Socket class in Visual Studio. The captured information is analyzed directly and illustrated in graphs and tables to give the user all the information in a simple way. There are two scenarios are used in this paper in order to validate the ability of this tool. The first scenario is to analyze IPV4 by capturing the packets and identifying the used ports, protocols, and the packets. However, the second scenario is to analyze IPV6 in the same way. The results indicate the ease of use of the tool through the presence of user-friendly graphical interface and simplicity in terms of buttons and menus. The results are varied from IPv4 to IPv6 by the number of captured protocols and the used ports for both source and destination.
    Keywords: Network analyzer; Network sniffer; sniffing tool; network packets capturing.

  • A Methodology For Evaluating The Transparency Of eGovernment Websites   Order a copy of this article
    by Ishaku Liti Awalu, Hung Kook Park 
    Abstract: Over the years, ICTs have transformed governance, with websites increasingly being the focal point of government information and service delivery to its citizens. Recently, several evaluation methodologies as well as standards such as usability, accessibility, credibility, and functionality have been developed. Lately, due to increased demand by stakeholders for open data and open information, Transparency has become one of the standards for evaluation of government information and service openness. Currently, government wide Transparency is measured by organizations such as Open Government Partnership OGP and EU. Unfortunately, despite a few conceptual frameworks proposed by some researchers, there is no thorough research into practical and actual evaluation of Transparency of government websites. Consequently, this paper proposes a methodology for the evaluation of a government website Transparency. The methodology researched available literature to identify attributes of website Transparency. The attributes were analyzed for redundancy and subsequently grouped into four major categories/indicators using deductive reasoning. The four major categories/indicators are information, reliability, reachability and accountability documents. Information is sub categorized into website content and the way the content is presented or rendered on the website. Reliability is made up of attributes such as privacy policy, spelling error, branding etc. Reachability consists of contact details of key officials of the organization as well as that of the organization itself. Accountability documents are reports and statistics, budget or procurement documents, freedom of information report, annual reports etc. Finally, the paper highlighted how the methodology can be applied in the evaluation and ranking of government websites based on Transparency.
    Keywords: Transparency; Website Evaluation; Web Engineering.

  • OREA for improving data packet transmission in Wireless Sensor Networks with Cloud Security Mechanism   Order a copy of this article
    by Senthil Kumar, Thirukrishna J T 
    Abstract: Wireless Sensor Networks (WSNs) are often used for observing physical world applications which performs the effective automation process. Sensor Networks contain numerous nodes that can sense and gather statistical data. Data gathering become obvious by sensor nodes over the sensor deployed environment. These sensor nodes function by the power source, i.e. battery. The battery has been fixed in the sensor nodes. So it is difficult to replace or remove the battery from the sensor nodes. One of the prime key design issues in the Wireless Sensor Networks is power consumption i.e energy. When the sensed data is transmitted to the sink then sensor nodes consumes the energy from battery. Since nodes are functioning by this battery power. The proposed algorithm of Optimized Radio Energy Algorithm (OREA) provides efficient energy dissipation and data transmission to the sink is quite faster. The dimension of overall performance of a service in the WSNs is known as Quality of Service (QoS).The Quality of Service metrics traffic load and packet delivery ratio has been compared OREA with existing algorithms such as random and homogenous selection. OREA provides better QOS delivery and also prolonged battery life time in order to achieve the efficient usage of power. The simulation of MATLAB results manifested to attain the network life time has prolonged in comparison with existing algorithms and also provides cloud security mechanism.
    Keywords: Wireless Sensor Networks; IEEE 802.15.4; Quality of Service; Energy; Sensor Node; 6LoWPAN; Cloud Security.

  • Cluster-based Authentication for Machine Type Communication in LTE Network using Elliptic Curve Cryptography   Order a copy of this article
    by K. Krishna Jyothi, Shilpa Chaudhari 
    Abstract: Machine Type Communication (MTC) is a significant approach for communication in the Long Term Evaluation (LTE) networks. This paper intends to introduce a new cluster based authentication model for MTC in the LTE network. The presented framework includes the phases such as (i) Clustering (ii) Node registration, (iii) Optimal Cluster Head Selection (CHS), (iv) CH authentication and (v) MTC. At first, the nodes in LTE network are subjected under the clustering process via k-means approach and subsequently, the nodes do its registration as well. As each cluster needs their head, it is essential to select the optimal node for the same, which acts as the representative for all the remaining nodes in the cluster. However, the selection of optimal cluster head is a tedious process, and hence, this paper establishes a novel hybrid approach for selecting the CH. The adopted scheme is termed as Wolf Insisted Jaya Algorithm (WI-JA) that hybrid the concept of both Jaya Algorithm (JA) and Grey Wolf Optimization (GWO) algorithms. As a novelty, in this work, all the selected cluster head involves the records of all the remaining nodes exists in node, and this will be handled via Block Chain Technology. Finally, in the authentication phase, rather than authenticating each node in network, it is planned to authenticate the chosen cluster head since it substantiates the existing nodes in the network. Moreover, Elliptic Curve Cryptography (ECC) based CH authentication is done in this work. This proposed structure makes the roadmap for secured MTC. The performance of the presented framework was evaluated and proved over other conventional models with respect to certain measures.
    Keywords: MTC; Authentication; LTE network; Jaya Algorithm; Grey Wolf Algorithm.

  • Enhanced Modulation Scheme for Cognitive Radio Over Rayleigh Fading Channels Using Power Allocation And Spectrum Sensing Models   Order a copy of this article
    by B.Maheswara Rao, S. Baskar 
    Abstract: Majority of the spectrum occupancy measurement has been operated in the context of cognitive radio. Measurements of spectrum occupancy are enormous in outdoor elevated points such as building roofs, balconies and towers. Even though, these mentioned measurement scenarios provide better estimation of spectral activity of the primary transmitters, in practical situations where users are not located in that high point, they cannot be considered as representative of the spectrum occupancy recognized by a cognitive radio user. Over fading channels, spectrum sensing is considered as the most important operation of cognitive radios. Fading margin and count of relays within wireless communication link plays a key role in the sensing performance. Various sensing detectors are proposed in the literature, with an as-sumption that the primary user is either completely present or completely absent within the observation window. By using various modulation schemes for cognitive radio over Rayleigh fading channels, this paper aims to study the effect of the pri-mary user duty cycle on spectrum sensing performance.
    Keywords: Cognitive Radio; Rayleigh Fading; Spectrum Sensing; Signal Transmission; Fading Cycle,.

  • A Novel data sharing model for cloud environment using dual key authentication   Order a copy of this article
    by Gowtham Mamidisetti, Ramesh Makala 
    Abstract: In the present world scenario, cloud computing plays a significant role in the sharing of data between computing devices in a secure manner. Specifically, data sharing amongst dynamic or static groups has grown as a major factor. For this purpose, the study proposed a dual key authentication based dynamic group data sharing model in a cloud environment. First, data are encrypted before sharing using AES algorithm. Here, data is stored in the form of string instead of bytes which can reduce the memory size without affecting the original data. Second, the cryptographic approach is applied to overcome the issues of computational load and key length maintenance. A subkey is generated for the private key, wherein each user will receive a different subkey. Third, enabled the prevention of secret data from collusion attack and improved the malicious activity prediction during data transfer. So, the revoked user unable to violate data confidentiality. Also, the original data cannot be decrypted by anyone even if they receive it. Finally, this study evaluated the performance of the proposed cloud security model with the existing methods, especially PRE, CL-PRE, and SaDaSc.
    Keywords: Data Sharing; Encrypted Cloud Data; Cloud Services; Dynamic Group Data; Security; Access Control.

Special Issue on: Machine Learning and Artificial Intelligence for Computing and Networking in the Internet of Things

  • Translation of Code Mixed Language to Monolingual Languages using Rule Based Approach   Order a copy of this article
    by Shree Harsh, T.V. Prasad, G. Ramakrishna 
    Abstract: Computational Linguistics is an evolving area in Artificial Intelligence. The demand of language translation has significantly increased due to cross- lingual communication and information exchange. Bilingual code switching is habitually observed in bilingual community. Nowadays, much research is being done in machine translation (MT) from Indian languages to foreign languages, generally to English and vice versa. The core component of MT system is identification and translation of morphological inflections and PoS word ordering with respect to language structure. Indian languages are morphologically richer than English language and have multiple inflections during translation into English Language. This paper focuses on the analysis and translation of code mixed language, i.e., Hinglish into pure Hindi and pure English languages. The experiments based on the algorithms in the paper are able to translate code mixed sentences to pure Hindi with a maximum success rate of 91% and to pure English with a maximum success rate of 84%.
    Keywords: Code Mixing; Hinglish; Pure Language Translation; Hybrid Morphologyrn.

  • Enhancing the operations for Integrity check on Virtual Instance Forensic logs using Cuckoo Filter Trees   Order a copy of this article
    by Gayatri S P, Saurabh Shah, K.H. Wandra 
    Abstract: Logs play a vital role in the forensic domain. Logs are congregated by the cloud service providers or some third parties with the help of the cloud service provider. These logs can hold pieces of evidence for the crime committed using the resources of the cloud service provider. A user of the cloud who can be an oppugner can hire the virtual instances, launch an attack, commit a crime to delete all the contents and close them. In such a case, logs play a major role to trace such oppugner. Such logs which are stored in a centralized system can be a major drawback as they can be tampered easily by the oppugners with the help of employees of the service provider termed as the malicious insider or with the help of the forensic investigator during the investigation process. The tampering of logs is done to defend the oppugner who can bribe the malicious insider or the forensic investigator. To handle such issues the authors have recommended techniques which aid in validating the logs against tampering. The authors have developed the algorithms using the cuckoo filters which are developed in the recent past. The cuckoo filter trees assist in providing the integrity of logs to the court of law and thus making legal trails and thus prosecuting the oppugner in a fair manner.
    Keywords: cloud forensic; cuckoo filter; oppugner; log integrity; concealment; cuckoo filter tree; forensic log; Forensics Braced Cloud; virtual instance.

  • A BIOMETRIC BASED SECURE, ENERGY EFFICIENT, LIGHTWEIGHT AUTHENTICATION PROTOCOL FOR WIRELESS BODY AREA NETWORKS   Order a copy of this article
    by T. Santhi Vandana, S. Venkateshwarlu 
    Abstract: Wireless body area networks are one of the important categories of wireless networks for remote healthcare monitoring using wearable computing devices. In WBANs, it must be guaranteed that the privacy of users is not exposed to unauthorized entities while sending and receiving the data. Hence, a proficient and secure authentication protocol is highly essential in WBANs. Conventional security protocols have restricted and few protocols cannot protect the privacy of users. In this work, a secure, energy-efficient, lightweight authentication protocol is proposed for securing WBAN that performs authentication session key establishment in privacy-preserving data aggregation. The proposed protocol provides confidentiality, integrity, availability and authenticity of data. Based on the security analysis, it is clear that the proposed protocol provides powerful protection than majority of the available schemes in insecure channels.
    Keywords: Wireless body area networks; authentication protocol; biometrics; electrocardiogram; security protocols; wireless sensor networks.

  • ICU Medical Alarm System using IOT   Order a copy of this article
    by Fahd Alharbi 
    Abstract: : Monitoring in the Intensive Care Units (ICU) is an essential task to patient health and safety. The monitoring systems provide physicians and nurses with the ability to intervene when there is a deterioration in patient's condition. The ICU monitoring system uses audio alarms to alert about critical conditions of the patient or when there is a medical device failure. Unfortunately, there are cases of failure to respond to medical alarms that endanger the patient safety and result in death. The main reasons for the lack of responding to the alarms are alarm fatigue and alarm masking. In this paper, these issues are investigated and we propose a monitoring system using Internet of Things (IOT) to continually report the ICU medical alarm to doctors, nurses and family.
    Keywords: ICU; safety; audio alarm; alarm masking; alarm fatigue; IOT.

  • An Integrated Principal Component and Reduced Multivariate Data Analysis Technique for detecting DDoS attacks in Big data federated clouds   Order a copy of this article
    by Sengathir Janakiraman 
    Abstract: The rapid development and wide application of cloud computing in the applications of Big data on clouds necessitates the process of handling massive data, since they distributed among the diversely located data center clouds. Thus the need for an efficient detection scheme that differentiates legitimate cloud traffic from illegitimate becomes indispensable. In this paper, An Integrated Principal Component and Reduced Multivariate Data Analysis (PCA-RMD) Technique was proposed for detecting DDoS attacks in Big data federated clouds. This proposed PCA-RMD initially reduces the dimension of feature characteristics extracted from the big data traffic information by minimizing the principal components based on the method of correlation. Further, the correlation method is utilized for discriminating traffic based on EAMCA (Enhanced and Adaptive and Multivariate Correlation Analysis) and Enhanced Mahalanobis distance (EMD). The proposed PCA-RMD Technique is predominant in classification accuracy, memory consumptions and CPU cost compared to the baseline approaches used for investigation.
    Keywords: Big data Federated Clouds;DDoS attacks; Multivariate Data Analysis; Principle Component Analysis; Enhanced Mahalanobis Distance.

  • Smart Scheduling on Cloud for Traffic Signal to Emergency Vehicle Using IoT   Order a copy of this article
    by J. MANNAR MANNAN, Karthick Myilvahanan J, Mohemmed Yousuf R, Sindhanai Selvan K, Parameswaran T 
    Abstract: Emergency transportation in the larger cities needs a special concentration. A single negligence would cause a severe traffic deadlocks. Providing a dedicated lane to the emergency vehicle in larger cities is not feasible. The existing semi-automated traffic control system is not feasible to handle the situation of emergency transportation on metropolitan cities. To address this limitation, Internet of Things (IoT) based adaptive traffic signal control system is proposed. In this proposed system, GPS enabled ambulance position indicator get controls the traffic signal dynamically based on the position of ambulance and traffic density by using IoT devices. The deployment of RFID on road side closer to traffic signal have used to measure the distance of the vehicle queue over the predetermined ambulance path. The signal on the predetermined ambulance path have turned green dynamically by the ambulance vehicle via IoT controlled traffic signal, based on the location of the ambulance received from the GPS. This dynamic scheduling of traffic signal for smooth bypassing of ambulance vehicle is accurately measured without any delay by switching a traffic signal timing, from fixed time duration into variable time duration until the vehicle bypass the signal. The simulation results of our proposed research performed better compared with the other existing methods and it is very suitable to smart cities for traffic management during emergency vehicle transportation.
    Keywords: IoT; Internet; Emergency Transport System; Smart City; RFID; GPS; Automation.

Special Issue on: Advances in Security and Privacy for Cloud Computing

  • A Novel redundancy Technique to enhance the security of Cloud Computing   Order a copy of this article
    by Syed Ismail 
    Abstract: Cloud Computing is an emerging technology that offers computing, storage, and software as a service to ITorganizations and individuals. The users of the cloud can access the applications provided by it from anywhere, anytime, and anyplace in the world. Security is considered as a critical issue in the cloud environment. To prevent cloud resources from external threats, data leakage, and various attacks, security controls, and technological safeguards should be offered to the datacenters of the cloud. Additionally to integrity and availability cloud should also possess reliability. Reliability enables the users to completely forget about the availability and security of the data stored in the cloud without jeopardizing data loss.This paper proposes a novel approach known as the Multi-Cloud Database(MCDB) which uses multiple Cloud Service Providers (CSP) instead of a single CSP. For this purpose, a Shamir's secret sharing algorithm and a sequential Triple Modular Redundancy(TMR) technique are implemented toimprove the reliability and offer enhanced security to the MCDB. The proposed model is compared with one single cloud(SPORC) and four multi-cloud models(DepSky, HAIL, RACS,MCDB without TMR) in terms of Reliability, Integrity, Confidentiality, Availability, and Security. The maximum Reliability, Integrity, Confidentiality, Availability, and Security values obtained for the proposed model were 100%, 99%, 99%, 97%, and 99%.
    Keywords: Cloud Computing; Reliability; Security; Multi-cloud Database; Shamir's secret sharing algorithm; and Triple Modular Redundancy.

  • PRESERVING PERSONAL HEALTH RECORDS SECURITY AND PRIVACY USING C-R3D ALGORITHM AND MULTIMODAL BIOMETRIC AUTHENTICATION   Order a copy of this article
    by Meena Settu, Gayathri V 
    Abstract: Data security and privacy are staying one of the most significant concerns for cloud computing. The secrecy of the Personal Health Records (PHI) and Personally Identifiable Information (PII) is the main issue when financial cloud servers are utilized by healthcare associations to preserve the patients' health records since patient's information could be handled by numerous foundations for example, government and private emergency clinics and hospitals, general professionals and examination labs. Recent years, numerous intrusions on healthcare information intensified the requirement for tight security for healthcare data. Additionally, the security specialists state that such a large number of vulnerabilities are there at the Health and Humanities Service Systems Data (HHSSD). If it isn't alleviated, it could make an immense risk and potential threats to the HHSSD. So the security solutions must be expedient and simple to supplying and aiding high-level safety without compromising network performance and it is more essential to regulate critical layer of security to maintain the patients sensitive information. This paper proposes novel data encryption in healthcare cloud by applying C-R3D (Combined RSA and Triple DES) algorithm to encrypt every patient's personal health record file before moving into the cloud which ensures data confidentiality. In addition, Multimodal Biometric authentication has been connected, for example, integrated unique finger impression and iris authentication along with username and password which ensures the privacy of patients sensitive information stored in the healthcare cloud. Thus, the experimental outcomes demonstrate the effectiveness of the proposed framework
    Keywords: Data Security; Personal Health Records; Health and Humanities Service Systems Data (HHSSD); Combined RSA and Triple DES; Multimodal Biometric Authentication.

  • Intrusion Detection and Prevention of DDoS attacks in Cloud Computing Environment: A Review on Issues and Current Methods   Order a copy of this article
    by Kiruthika Devi, Subbulakshmi T 
    Abstract: Cloud computing has emerged as the most successful service model for the IT/ITES community due to the various long-term incentives offered in terms of reduced cost, availability, reliability and improved QoS to the cloud users. Most of the applications already migrated to centralized data centres in the cloud. Due to the growing needs of the business model, more small and medium enterprises rely on the cloud because little investment would suffice on the infrastructure and hardware/software. The most alarming cyber-attack in the cloud that interrupts the availability of the cloud services is Distributed Denial of Service (DDoS) attack. In this paper, various existing Intrusion Detection Systems (IDS) and Intrusion Prevention Systems (IPS) and their positioning in the cloud are investigated and the essence of the current techniques in the literature is briefed in detail. The comprehensive review on the latest IDS/IPS solutions and their capabilities to detect and prevent intrusions in the cloud are explored and the comparisons of the methodology provides the researchers with the security issues/challenges exposed in the cloud computing environment. The significance of the design of a secure framework for cloud is also being emphasized for achieving improved security in the cloud.
    Keywords: Cloud computing; DDoS; IDS; IPS; security.

  • Legal Issues in Consumer Privacy Protection in the Cloud Computing Environment: Analytic Study in GDPR, and USA Legislations   Order a copy of this article
    by Alaeldin Alkhasawneh 
    Abstract: Cloud computing services are considered one of the most important services provided for companies due to the various benefits they confer. However, data privacy is a big concern for users and laws covering this have many contradictions and require improvement. This paper discusses the laws governing privacy issue in cloud and highlights missing components that could be added to laws considered and also proposes laws amendments which may help create a better consumer experience, improved service and increased protection for personal data. At the end of the paper, a set of recommendations is proposed that should be followed by government and private companies which would increase the responsibility held by cloud computing service providers in case of failing to protect personal data from privacy invasion.
    Keywords: Consumer; Privacy; Cloud Computing; GDPR.

Special Issue on: Impact of Machine Learning in the Cloud Computing Revolution

  • Word Sense Disambiguation using Optimization Techniques   Order a copy of this article
    by Rajini Selvaraj, Vasuki A 
    Abstract: In the field of Computational Linguistics, Word Sense Disambiguation(WSD) is a problem of high significance which helps us to find the correct sense of a word or a sequence of words based on the given context. Word sense disambiguation is treated as a combinatorial optimization algorithm wherein the aim is to discover the set of senses which help to improve the semantic relatedness among the target words. Nature inspired algorithms are helpful to find optimal solutions in reduced time. They make use of collection of agents that interact with the surrounding environment in a coordinated manner. In this article, two such algorithms, namely, Cuckoo Search and Firefly algorithms, have been used for solving this problem and their performance have been compared with the D-Bees algorithm based on Bee Colony optimization algorithm. They have been evaluated using the standard SemEval 2016 task 11 data set for complex word identification. Experimental results show that Firefly algorithm is performing the best.
    Keywords: Word sense disambiguation; Cuckoo search; optimization; firefly; Bees algorithm; unsupervised.

  • Multi cloud based Secure Privacy Preservation of Hospital Data in Cloud Computing   Order a copy of this article
    by KanagaSubaRaja S, Sathya Arunachalam, Karthikeyan S, Janani T 
    Abstract: The growth of cloud computing has led to privacy concerns abundantly. Any organization/user sends all the information to the cloud service provider and so the organizations/users data security is a concern. Data privacy and security issues can be solved by establishing clear policies that enable authorized data access and security. User authentication is the primary basis for access control and so using cryptographic encryption mechanism like key policy attribute based encryption we can provide strong authentication to ensure that data can be viewed by only who have to access it. Followed by which a never compromised integrity mechanism like SHA-256 hash mechanism is used to ensure that data is not modified in transit. These hashes are concatenated in a way to form top hash by structuring in a merkle hash tree. They are used by the erasure code to find lost data during any of the crashes. To make it efficient and to find the data loss, third party auditors are installed to check and report any changes in any of the cloud storage. Data recovery is by means of retrieving the data from another cloud that has the replica of these data.
    Keywords: Multi cloud; Key policy attribute based encryption; MHT; erasure code; third party auditor.

  • Effective Data Management and Real Time Analytics in Internet of Things   Order a copy of this article
    by Jeba N, Rathi S 
    Abstract: Integrating various embedded devices and systems in our socio-economic living environment enables Internet of Things (IoT) for smart cities. The underlying IoT infrastructure of smart and connected cities would generate enormous amount of heterogeneous data that are either big in nature or fast and real time data streams that can be leveraged for safety and efficient living of the inhabitants. Real time analytics on data enable to extract useful information from the voluminous data and provide information to users for decision making and help in feedback mechanism. In this paper, the effective management of heterogeneous data and real time analytics on data are studied. Data management deals with collecting and storing useful information to reduce manual tasks. Therefore, data management techniques should be consistent, interoperable and ensure reusability and integrity. We have explained the various architectures that can be used to deploy IoT in neural networks and the various streamingrntechniques for real time analytics.
    Keywords: Real time analytics; data management; heterogeneous data; IoT.

  • An Efficient Document Clustering Using Hybridized Harmony Search K-Means Algorithm with Multi view Point   Order a copy of this article
    by Siamala Devi, S. Anto , Siddique Ibrahim S P 
    Abstract: Document clustering is the most needed process in the data mining field where the number of documents with different methodologies are scattered. The meaningful information can be extracted from the group of documents by grouping them effectively. There are various researches exists previously which concentrates on clustering the documents present in the real. In the previous work, document clustering is done by using the methodology called the Hybridized Harmony K Means search (HHKM) algorithm. In this, clustering is done by using the K-means algorithm and the centroids of clusters are found optimally by using the harmony search algorithm. Initially, Hybridization of K-Means and Harmony Search based on Concept based, Kernel and weighted feature based Clustering algorithm (CKW HHKM) is adopted to cluster the documents. The problem reside in this method is the poor accuracy while clustering the documents where the unrelated documents are grouped together. To overcome this problem, Multi view Point HHKM (MP HHKM) approach is introduced, in which clustering can be done accurately. In this work, multi point analysis is done based on the similarity measurement. The exploratory tests were directed on News group and TREC data set from which it is clear that the proposed technique MPHHKM outperforms the existing technique with better accuracy values.
    Keywords: Clustering; Harmony Search; Multi view Point; Optimal.

  • DNA Coding and RDH Scheme Hybrid Encryption Algorithm Using SVM   Order a copy of this article
    by SHIMA RAMESH MANIYATH, Thanikaiselvan V 
    Abstract: As the communication technology advanced rapidly in recent times, the need for confidential data communication also arose. Here, a computationally feasible encryption/decryption algorithm is proposed to secure data using DNA sequences. The principal objective of DNA algorithm is to reduce big image encryption time. In this algorithm, natural DNA sequences are used as main keys. The image in which secret data is hidden using Reversible Data Hiding (RDH) technique is encrypted twice before transmission. RDH is an information security technology which is extremely helpful in telemedicine. Authentication is necessary for images captured by robots. This can be used for authentication of data or the owner of data. This technique also enables us to embed Electronic Patient Records (EPR) data into medical image before transmission, which can be later recovered on transmission side. The images are divided block-wise before encryption, in the proposed scheme. Machine Learning helps us to design a Support Vector Machine (SVM), based on which a classification scheme is obtained to group encrypted and original images separately, and to recover original image from encrypted image.
    Keywords: Reversible Data Hiding; DNA; Image Encryption; Support Vector Machine; Feature Extraction.

  • Computation of Testing Approach in Cloud Mobility Service   Order a copy of this article
    by Yuvaraj D, Bazeer Ahamed B, Manikandan V 
    Abstract: Abstract At present, programming item turns into a fundamental segment in running numerous partners' exercises. For example, the enterprises, for the most part, use cloud administrations to execute their significant business usefulness. Be that as it may, by a couple of info's parameter interfacing, this usefulness can be pended. Such requirement postures testing to cover different highlights of disappointment particularly in guaranteeing cloud application. One path is to devise a technique to cover input parameters' qualities dependent on combinatorial testing approach. This method incorporates every single imaginable blend of test contributions for identifying bugs on the System Under Test (SUT). The paper clarifies the combinatorial covering exhibits to create generally comprehensive testing by demonstrating highlights of test administrations utilizing Feature IDE module in Eclipse IDE. Along these lines, we fabricate the information area model to speak to the inclusion of the current portability administration running on NEMo Mobility cloud stage. Utilizing this model, covering exhibits is connected to create t-way experiments by utilizing IPOg calculation, which is executed in a CiTLab. As an experiment, the executives, the JUnit testing structure uses test stubs to approve the test techniques for produced experiments on the predefined administration (SUT)
    Keywords: Combinatorial Testing; Input Domain Model; Software Testing; CiTLAB; Cloud Mobility Service.

  • Protection of Mental healthcare documents using sensitivity based Encryption   Order a copy of this article
    by Kalaiselvi Shanmughasundaram, Vanitha Veerasamy, Sumathi V P 
    Abstract: Data security breaches and medical identity theft are the growing concerns in current scenario. Adopting IT services provided under cloud based technologies again increases the security threats. Several cryptographic techniques exist to protect data where the selection of appropriate technique increases the security while reducing the processing cost. The proposed method analyses the textual medical documents for their content sensitiveness and determines the adoption of appropriate cryptographic techniques. As security remains top concern for cloud adoption the proposed sensitivity based encryption improves the security and encryption efficiency at a significant level. The experimentation reveals that about 4% of time complexity gets reduced in encryption.
    Keywords: Encryption; Efficiency; AES; Sensitivity data; Cloud computing.

  • Using Augmented Reality to Support Children With Dyslexia   Order a copy of this article
    by Majed Aborokbah 
    Abstract: This paper presents the use of interactive improved reality interface to assist and support children with dyslexia and it is one of the most common learning disabilities in the world. This is a literacy-based learning difficulty that mainly effect in reading, writing, speaking, short-term memory, spelling and etc. Many more people perhaps as many as 1520% of the population as a whole have some of the symptoms of dyslexia. This paper introduces case studies with different learning scenarios of Arabic language which have been designed based on Human Computer Interaction (HCI) principles so that meaningful virtual information is presented for dyslexic children in an interactive and compelling way. The smart phones are considered as being potentially valuable learning tools, this due to their portability, accessibility and pervasiveness. The blending of Technology and education is something that is growing rapidly and becomes most popular. Augmented Reality (AR) is recent example of a technology that has been combined into the educational field. This work aims to integrate mobile technology and AR method to improve the dyslexic children (DC) academic performance, concentration and short-term memory. The design process includes the following steps of identify the research problem and determines the requirements to overcome dyslexia problems, collect carefully the data from different sources and the collected data will be used to construct the target product based on the prototype methodology. As the output come, it will contribute in improving the learning and basic skills of children with dyslexia.
    Keywords: learning disabilities; learning tools; augmented reality;.

  • MOBILITY OF SINK BASED DATA COLLECTION PROTOCOL (MSDCP) FOR ENERGY BALANCING IN WSN   Order a copy of this article
    by LALITHA THAMBIDURAI, SaravanaKumar R 
    Abstract: A sensor node is that the significant part of a wireless sensor network. Sensor nodes have various roles in a network includes identifying data storage, data processing and routing method. Cluster is an organizational element for wireless sensor networks. The powerful environment of this network is very essential for them to be broken down into clusters to make easier responsibilities such as communication. Cluster heads are the group head of a cluster have greater data rate match the alternative cluster member. rnThey frequently needed to associate activities within the cluster. These methods comprise but are not controlled to data aggregation and forming account of a cluster .Base station is at the upper level of organized wireless sensor network. It generates communication link among the sensor network and the end user.The data in a sensor network can be used for an enormous variety of applications. A detailed application is form use of network data over the internet retaining a personal digital assistant or desktop computer.rn This paper contributions mobility based reactive protocol named Mobility of Sink based Data Collection Protocol (MSDCP).This protocol sensor with great energy and maximum quantity information are picked as cluster heads that gather data from the common nodes between the clusters. This data is placed unless mobile sink comes within the transmission area of cluster heads and request for the gathered data. One time the request is received from cluster head and it forward data to the mobile sink.rn
    Keywords: WSN; MSDCP; Transmission Area; Cluster Head;.

  • Fuzzy-C means Segmentation of Lymphocytes for the Identification of the Differential Counting of WBC   Order a copy of this article
    by Duraiswamy Umamaheswari 
    Abstract: In the domain of histology, discovering the population of White Blood Cells (WBC) in blood smears helps to recognize the destructive diseases. Standard tests performed in hematopathological laboratories by human experts on the blood samples of precarious cases such as leukemia are time-consuming processes, less accurate and it totally depends upon the expertise of the technicians. In order to get the advantage of faster analysis time and perfect partitioning at clumps, an algorithm is proposed in this paper that automatically identifies the counting of lymphocytes present in peripheral blood smear images containing Acute Lymphoblastic Leukemia (ALL). That performs lymphocytes segmentation by Fuzzy C-Means clustering (FCM). Afterward, neighboring and touching cells in cell clumps are individuated by the Watershed Transform (WT), and then morphological operators are applied to bring out the cells into an appropriate format in accordance with feature extraction. The extracted features are thresholded to eliminate the regions other than lymphocytes. The algorithm ensures 98.52% of accuracy in counting lymphocytes by examining 80 blood smear image samples of the ALL-IDB1 dataset.
    Keywords: Fuzzy c-means; medical image processing; morphology; segmentation; watershed; WBC count; leukemia.

  • A New Venture to Image Encryption using Combined Chaotic System and Integer Wavelet Transforms   Order a copy of this article
    by Subashanthini S, Pounambal Muthukumar 
    Abstract: In this digital era, securing multimedia information is receiving its due concern apart from securing textual data. Securing the image by utilising integer wavelet transform is the chief curiosity of the proposed work. This research work is envisioned to explore the use of reversible Integer Wavelet Transforms (IWT) for designing robust image encryption algorithm. The proposed exploration comforts to seal the gap in the space in between image encryption and the existing robust IWT. Ten different IWT namely Haar, 5/3, 2/6, 9/7-M, 2/10, 5/11-C, 5/11 A, 6/14, 13/7-T, 13/7-C are used for the analysis. Four keys utilised for image scrambling and image diffusion are generated with the help of the proposed combined chaotic system. Image scrambling is performed only on the approximation coefficients to get full image scrambling and Bit XOR is used for image diffusion. This proposed method provides NPCR value as 99.6246%, UACI value as 33.5829, entropy value as 7.997 and very less correlation values. Simulation results prove that image encryption technique can be designed with various integer wavelet transforms.
    Keywords: IWT; Chaotic map; Image encryption; Bit XOR encryption; Image scrambling; Entropy.

  • Programming and Epic Based Digital Storytelling Using Scratch   Order a copy of this article
    by Yamunathangam D 
    Abstract: Storytelling is a powerful tool to impart traditional and cultural values to children. Traditional storytelling followed by our ancestors have reduced. Digital storytelling has emerged as the successor and the modern storytelling method follows similar strategies of classical storytelling. Digital storytelling has started its evolution in teaching and learning process and emerged as the best tool to engage teachers and their students. Middle school students use various digital storytelling environments to learn a programming language. In this paper, Epic Based Digital Storytelling(EBDS) pedagogy using scratch to learn a programming language is discussed. The various aspects of using EBDS in education are given in the paper.
    Keywords: Epic Based Digital Storytelling; pedagogy; Scratch; team based learning; Programming.

Special Issue on: Cloud Computing and Networking for Intelligent Data Analytics in Smart City

  • Real Time ECG Signal Preprocessing and Neuro Fuzzy Based CHD Risk Prediction
    by S. Satheeskumaran, C. Venkatesan, S. Saravanan 
    Abstract: Coronary heart disease (CHD) is a major chronic disease which is directly responsible for myocardial infarction. Heart rate variability (HRV) has been used for the prediction of CHD risk in human beings. In this work, neuro fuzzy based CHD risk prediction is performed after performing preprocessing and HRV feature extraction. The preprocessing is used to remove high frequency noise which is modelled as white Gaussian noise. The real time ECG signal acquisition, preprocessing and HRV feature extraction are performed using NI LabVIEW and DAQ board. A 30 seconds recording of ECG Signal was selected in both smokers and nonsmokers. Various statistical parameters are extracted from HRV to predict Coronary heart disease (CHD) risk among the subjects. The HRV extracted signals are classified into normal and CHD risky subjects using neuro fuzzy classifier. The Classification performance of the neuro fuzzy classifier is compared with the ANN, KNN, decision tree classifiers.
    Keywords: Electrocardiogram (ECG); Gaussian noise; Wavelet transform; Heart rate variability (HRV); Neuro fuzzy technique; Coronary heart disease (CHD).

  • An Intelligent Block Matching Approach for Localization of Copy-Move Forgery in Digital Images
    by Gulivindala Suresh, Chanamallu Srinivasa Rao 
    Abstract: Block-based Copy-Move Forgery Detection (CMFD) methods work with features from overlapping blocks. As overlapping blocks are involved, thresholds related to similarity and the physical distances are defined to identify the duplicated regions. However, these thresholds are controlled manually in localizing the forged regions. In order to overcome this, an intelligent block matching approach for localization is proposed using Colour and Texture Features (CTF) through Firefly algorithm. Investigation of the proposed CTF method is carried out on a standard database, which achieved an average true detection rate of 0.98 and an average false detection rate of 0.07. The proposed CTF method is robust against brightness change, colour reduction, blurring, contrast adjustment attacks, and additive white Gaussian noise. Performance analysis of the CTF method validates its superiority over other existing methods.
    Keywords: Digital forensics; copy-move forgery detection; intelligent block matching; firefly algorithm.

  • Optimized Fuzzy Clustering Based Resource Scheduling and Dynamic Load Balancing Algorithm for Fog Computing Environment
    by Bikash Sarma, R. Kumar, Themrichon Tuithung 
    Abstract: The influential and standard tool that is named as Fog Computing performs applications of Internet of Things (IoT) and it is the Cloud Computing’s extended version. In the network of edge, the applications of IoT are possibly implemented by the Fog Computing which is an emerging technology in Cloud Computing infrastructure. The unique technology in Fog Computing is the resource scheduling process. The load on the Cloud is minimized by the resource allocation of Fog based computing method. Maximization of throughput, optimization of available resources, response time reduction, and elimination of overload of single resource are the goal of load balancing algorithm. This paper suggested an Optimized Fuzzy Clustering Based Resource Scheduling and Dynamic Load Balancing (OFCRS-DLB) procedure for resource scheduling and load balancing in Fog Computing. For resource scheduling, this paper recommended an enhanced form of Fast Fuzzy C-means (FFCM) with Crow Search Optimization (CSO) algorithm in Fog Computing. Finally, the loads or requests are balanced by applying the scalability decision technique in load balancing algorithm. The proposed method is evaluated based on some standard measures like response time, processing time, latency ratio, reliability, resource utilization, and energy consumption. The proficiency of the recommended technique is obtained by comparing with other evolutionary methods.
    Keywords: Fog Computing; Fast Fuzzy c-means clustering; Crow Search Optimization algorithm; Scalability decision for load balancing.

  • Discrete Stationary Wavelet Transform and SVD Based Digital Image Watermarking for Improved Security
    by Rajakumar Chellappan, S. Satheeskumaran, C. Venkatesan, S. Saravanan 
    Abstract: Digital image watermarking plays an important role in digital content protection and security related applications. Embedding watermark is helpful to identify the copyright of an image or ownership of the digital multimedia content. Both the gray images and color images are used in digital image watermarking. In this work, discrete stationary wavelet transform and singular value decomposition (SVD) are used to embed watermark into an image. One color image and one watermark image are considered here for watermarking. Three level wavelet decomposition and SVD is applied and watermarked image is tested under various attacks such as noise attacks, filtering attacks and geometric transformations. The proposed work exhibits good robustness against these attacks and obtained simulation results show that proposed approach is better than the existing methods in terms of bit error rate, normalized cross correlation coefficient and peak signal to noise ratio.
    Keywords: Digital image watermarking; Discrete stationary wavelet transform;, Wavelet decomposition; Singular value decomposition (SVD); Peak signal to noise ratio (PSNR).

  • Disaster Management Using D2D Communication with ANFIS Genetic Algorithm Based CH Selection and Efficient Routing by Seagull Optimization
    by Lithungo K Murry, R. Kumar, Themrichon Tuithung 
    Abstract: The Next generation networks and public safety strategies in communications are on crossroads in order to render best applications and solutions. It can succeed disaster proficiently. There are three major challenges and problems considered here, they are; (i) unproportionate disaster management scheduling among bottom-up and top-down strategies, (ii) greater attention on the disaster emergency reaction phase and the absence of management in the complete disaster management series, and (iii) arrangement deficiency of a long-term reclamation procedure, which results in stakeholder resilience and low level community. In this paper, a new strategy is proposed for disaster management. A hybrid Adaptive Neuro-Fuzzy Inference Network based Genetic Algorithm (D2D ANFIS-GA) used for selecting cluster head and for the efficient routing Seagull Optimization Algorithm (SOA) is used. Implementation is done in MATLAB platform. The performance metrics such as energy utilization, average battery lifetime, battery lifetime probability, average residual energy, delivery probability, overhead ratio has taken for the performance. Experimental results are compared with the existing approaches Epidemic and FINDER. According to the experimental results our proposed approach gives better results.
    Keywords: Disaster Management; Adaptive Neuro Fuzzy Inference Network; Residual Energy; Device-to-Device (D2D) Communication; Seagull Optimization Algorithm.

  • Design and Implementation of Chicken Egg Incubator for hatching using IoT
    by Niranjan Lakshmappa, C. Venkatesan, Suhas A R, S. Satheeskumaran, Aaquib Nawaz S 
    Abstract: In this paper, the egg fertilization is one of the major factor to be considered in the poultry farms. The smart incubation system is designed to combine the IoT technology with the smart phone in order to make the system more convenient to the user in monitoring and operation of the incubation system. The incubator is designed first with both setter and the hatcher in one unit and incorporating both still air incubation and forced air incubation which is controller and monitored by the controller keeping in mind the four factors temperature, humidity, ventilation and egg turning system. Here we are setting with three different temperatures for the experimental purpose at T1=36.5oC, T2=37.5oC and T3=38oC. The environment is maintained same in all the three cases & noted which is the best temperature for the incubation of the chicken eggs.
    Keywords: IoT; poultry farms; embryo; brooder; hatchery; Blynk App

Special Issue on: CUDC - 2019 Emerging Research Trends in Engineering, Science and Technology

  • Software Defined Networking: A Crucial Approach for Cloud Computing Adoption   Order a copy of this article
    by Sumit Badotra, Surya Narayan Panda 
    Abstract: The most important convince which is contributed by the cloud is that it lets to deliver an infrastructure framework and various services rapidly instead of ordering, installing and then configuring a lot of servers, you can go for a particular number of virtual machines (VMs). Networking approach used in the cloud the network is becoming a hurdle to expand its scalability and therefore, it becomes one of the reasons that the network has become more complex and highest time-consuming part of executing the application. But with the help of introducing Software Defined Networking (SDN) approach into the networking, now the network infrastructure and its services can be configured through well-defined an Application Programming Interface (API), manageability of the cloud network is enhanced with the capability of increasing its scalability and therefore, the collaboration of Cloud and SDN is one of the hottest topics nowadays. This study aims to provide the importance of SDN in the cloud. In order to limit the hurdles in cloud infrastructure, especially in the large data, centers detailed study on its importance, architectural and advantages are stated. One of the newly emerged simulation tool (CloudSimSDN) with its detailed explanation for executing the experiments is also illustrated.
    Keywords: cloud computing; data centers; software defined networking; data plane; control plane; application programming interface.

  • Performance Comparison of Various Techniques for Automatic Licence Plate Recognition Systems   Order a copy of this article
    by Nitin Sharma, Pawan Kumar Dahiya, Baldev Raj Marwah 
    Abstract: Automatic licence plate recognition system is direly needed nowadays for various applications like toll collection system, parking system, identification of stolen cars, incident management, electronic payment service, electronic customs clearance of commercial vehicle, automatic security roadside inspection, security monitoring in a car, emergency notification, and personal security, etc. An automatic licence plate recognition system performs three important processing steps on the input image, i.e., extraction, segmentation, and recognition. A number of algorithms are developed for these steps since last few years. The result of which is significant improvement in the licence plate recognition. The aim of this study is a survey of the existing techniques for licence plate recognition. In this paper, a number of existing techniques for automatic licence plate recognition are presented and their benefits and limitations are discussed. Further, the paper also foresees the future scope in the area of automatic licence plate recognition system.
    Keywords: Automatic Licence Plate Recognition System (ALPR); Neural Network (NN); Optical Character Recognition (OCR); Support Vector Machine (SVM).

  • Comparative Analysis of different Polynomial Interpolations for implementing Key Management techniques in MANETs   Order a copy of this article
    by Chetna Monga, K.R. Ramkumar, Shaily Jain 
    Abstract: The backbreaking issue in Mobile Ad hoc NETworks (MANETs) is ensuring security which abounds due to dynamic nature and unavailability of centralized infrastructure. Due to the distributed nature of network, trading the complexity has been found so far as a natural remedy to ensure security. In order to secure MANETs, we inspect two polynomial interpolation approaches avowed as Lagranges interpolation and other as Curve fitting. The key shares are disseminated among some predefined fraction of nodes called Security Association Members (SAMs). In order to facilitate certificate management in a versatile stance, identity (ID) based method with polynomial based interpolation approach is used. The new node has to fit into the parameters set by these SAMs so as to acquire the required quantity of key shares. As the key shares are transferred through Error- Free and Error- Prone channels, so the assumptions are done likewise. The analysis represents the superiority of Curve fitting over Lagranges approach as the intricacy of generating polynomial in Lagranges approach is high than the Curve fitting. The result reveals the acute accuracy of Curve fitting approach along with less memory and time consumption with each order of polynomial.rnrn
    Keywords: MANETs; Key Management; Polynomial Interpolation; Lagrange Interpolation; Curve Fitting; Security; Accuracy; Memory consumption; Secret Key; Node-ID.

Special Issue on: ICAIIS-2019 Smart Intelligent Computing and Communication Systems

  • Tangles in IOTA to make Crypto currency Transactions Free and Secure   Order a copy of this article
    by Prabakaran Natarajan 
    Abstract: Block-chain introduction has made a revolutionary change in the cryptocurrency around the world but it has not delivered on its promises of free and faster transaction confirmation. Serguei Popov proposal of using tangles, a directed acyclic graph which essentially is considered to be the successor of block-chains and offers the required features like machine to machine micro payment and feeless transaction. It requires the user to approve the previous two transactions in the web to participate in the network. This essentially eliminates the miners and the mining part form the currency exchange and provides the user or participants to do their transactions feeless. Since the participant verifies the previous two transactions it also contributes to the security of the tangle. In this paper features of IOTA and all the improvements in it using tangles are discussed along with how it contributed to the security and how it enables the participants to have feeless transactions is also discussed.
    Keywords: E-coin; Block-chain; Cryptocurrency; IOTA; Tangles; DLT; Feeless Transaction.

  • A Novel Filter for Removing Image Noise and Improving the Quality of Image   Order a copy of this article
    by Prathik A, Anuradha J, Uma K 
    Abstract: This paper proposed a Hybrid Wavelet Double Window Median Filter (HWDWM) which is made by blending Decision Based Coupled Window Median Filter and Discrete Wavelet Transform (DWT) and review is made to increase the filters which are widespread for removing noise. In proposed filter there are double window such as row window and column window. This proposed method take the noisy image for processing and it moves row window for indexing from 1st pixel of the noisy image up to last pixel of the noised image then it indexing is made by column window then decompose the signal of the image to provide the localization. The noisy image is decomposed by DWT, then coefficients are transformed to independent distributed variables. The coefficients are then analyzed on the basis of threshold. Image is reconstructed using wavelet transforms inverse after the threshold. Experiments were executed in order to show the effect of noise removal filters on soil image. Two metrics are used to measure the quality of image they are: peak signal to noise ratio (PSNR) and Root Mean Square Error (RMSE). Experimental results show the superiority of this filter over other noise removal filters.
    Keywords: Data mining; Soil Classifications; Filters; PSNR and MSE.

  • Implementation of Data Mining to Enhance the Performance of Cloud Computing Environment   Order a copy of this article
    by Annaluri Sreenivasa Rao, Attili Venkata Ramana, Somula Ramasubbareddy 
    Abstract: To deal with large scale computing events, the advantages of cloud computing are used extensively, whereby the possibility of machines processing larger data is possible to deliver in a scalable manner. Most of the government agencies across the globe are using the architecture of cloud computing platform and its application to obtain the desired services and business goals. However, one cannot ignore the challenges involved using the technology linked with large amount of data and internet applications (i.e. cloud). Though there are many promising advantages of cloud computing involving distributed and grid computing, virtualization, etc. helps the scientific community, also restricts with their limitations as well. One of the biggest challenges cloud computing faces is due to the exploitation of all the opportunities towards the security breaching and related issues. In this paper, an extensive mitigation system is proposed to achieve enhanced security and safer environment while using the applications of cloud computing. Using the decision tree model Chaid algorithm, it is proved to be a robust technique to classify and decision making by providing high end security for the cloud services. From the research of this work, it is proved that the standards, controls and policies are very important to the management processes for securing and protecting the data involved at the time of processing or application usage. Also a good management process needs to assess and examine the risks involved in cloud computing while protecting the system in use and data involved due to various security issues or exploits.
    Keywords: Cloud computing; security; Data mining; Multilayer percepton; decision tree (C4.5); Partial Tree.

  • Analysis of Breast Cancer Prediction and Visualization using Machine Learning Models   Order a copy of this article
    by Magesh G, Swarnalatha P 
    Abstract: Breast cancer is one of the most commonly occurring malignancies cancer in women, and there are millions of new cases diagnosed among womens and over 400,000 deaths annually worldwide. In our dataset, we have 30 real-valued attributes as features which are computed from the Fine Needle Aspirate (FNA) test. Our dataset values are calculated from the processed image of a first needle aspirate test of a breast mass. Our input values are extracted from the digitalized image of the FNA test. There are many algorithms used for prediction systems. We are choosing the best algorithms based on the precision result, accuracy, error rate. We are making a comparison of an effective way of applying algorithms and classifying data. We have different machine learning algorithms, a performance comparison conducted between those algorithms on the Breast Cancer datasets. Data visualization and descriptive statistics have presented. SVM with all features achieves 95% of precision, recall, and F1-score. After tuning the SVM parameters, accuracy has improved to 97%.
    Keywords: Breast Cancer; Machine Learning; Decision Tree; Classification; SVM; Prediction.

  • A comparative study on various preprocessing techniques and deep learning algorithms for text classification   Order a copy of this article
    by Bhuvaneshwari Petchimuthu, NagarajaRao A 
    Abstract: Preprocessing is the primary technique employed in sentiment analysis, and selecting the suitable methods in that techniques can increase the classifier accuracy. It reduces the complexity innate in the raw data which makes the classifier to learn faster and precisely. Despite of its importance, the preprocessing in polarity deduction has not attained much attention in the deep learning literature. So in this paper, 13 popularly used preprocessing techniques are evaluated on three different domain online user review datasets. For evaluating the impact of each preprocessing technique, four deep neural networks are utilized and they are auto-encoder, Convolution Neural Network (CNN), Long Short Term Memory (LSTM), and Bidirectional LSTM (BiLSTM). Experimental results on this study shows that using appropriate preprocessing techniques can improve the classification success. In addition, it is noted BiLSTM model performs better than the remaining neural networks.
    Keywords: ;sentiment analysis; deep learning; auto-encoder; convolution neural network; Long short term memory; Bidirectional LSTM.

  • An Optimal Selection of Virtual Machine for E-Healthcare Services in Cloud Data Centers   Order a copy of this article
    by PRATHAP R, MOHANASUNDARAM R 
    Abstract: In recent times, Cloud Computing plays a huge role in the processing of healthcare services. Such name that Electronic Healthcare services which are used to improve the healthcare performance in the cloud. A selecting and placing the virtual machine for healthcare service plays an important role and one of the challenges in the cloud. Huge levels of the data center are used to process the medical request. By doing these we would maximize the resource utilization and reduces the execution time of the medical request in the cloud data center. Multiple ways of techniques are used to solve the optimal issues in cloud resources. In this paper, a hybrid request factor-based multi-objective grey wolf optimization (RMOGWO) algorithm to solve the healthcare request in the cloud data centers efficiently. The proposed algorithm was tested and compared with the benchmark well-known algorithm for VM utilization in the cloud data centers. In addition, the efficiency of the Electronic healthcare services system in cloud performance increases in cloud utilization. Inaccuracy, the hybrid algorithm performs the maximum level of interaction with users. It is one of the superior models that improve resource utilization for healthcare services in the cloud.
    Keywords: Cloud Computing; Healthcare services; Virtualization; Multi-Objective Grey Wolf Optimization.

  • A Study on Automated Toll Collection: Towards the Utilization of RFID based System   Order a copy of this article
    by Naresh Kannan, Ranjan Goyal, Dhruv Goel 
    Abstract: The toll collection is becoming a major problem on the highways leading to large waiting queues. Toll gates installed on highways result in increased waiting time and fuel usage. In this paper, a study on Automated Toll Collection System using Radio Frequency Identification (RFID) based system is presented, which provides fast identification of vehicles and toll collection. Using this system, the identification can be done just by slowing down the speed of the vehicle when it is passing from the toll plaza. The RFID reader scans the RFID tag or card and deducts the amount from it. The research analyzed the system by proposing a mechanism and implementing an example scenario, which considered the random arrival of different vehicles. This technique is also compared with other existing mechanisms such as number plate recognition and bar code-based passes, which showed the need to utilize this technique for toll collection.
    Keywords: Automated toll collection; Radio Frequency Identification (RFID); RFID reader; RFID tag; Micro-controller.

  • A Microcontroller based System for Patient and Elderly Community Assistance   Order a copy of this article
    by Asmita Chotani, Naresh Kannan 
    Abstract: Generally, the elderly community is bedridden due to age parameters and health issues. Thus, there is a need for a system which can be an aid for this group. In this paper, a microcontroller-based system model is proposed. This system model assists the patients and elderly community by providing them the facility to satisfy their needs by informing the attenders/wards through a handheld device. Depending upon the frequency generated for a key press, a particular need is triggered among the set of predefined needs to the facilitator in terms of the audio from the device, which is mounted within his proximity.
    Keywords: DTMF; Mobile Phone; microcontroller; Arduino; patient; assistance.

  • The Big Data in Healthcare Industry Made Simple to Save People Life   Order a copy of this article
    by Vijay Anand R, Iyapparaja M 
    Abstract: In healthcare system big data is playing an important role andusing this data analysis to predict the outcomeof diseases prevention of effect of such additional disorders or diseases, transience and saving the cost of medical treatment. In many countries they diagnosis the diseases treatment big data playing a main role for information generate to identify the diseases. The main focus of Large information has started out and a few tasks were installed a place to share information of patients scientific records and perceive their records amongst fashionable public, non-public hospitals and clinics. However there are many challenges in conducting huge facts in healthcare specially in relation to privacy, protection, requirements, authority, integration of statistics, save the statistics, classify the data and to combine the generation. It's miles authoritative that these challenges to be overcome before huge facts can be implemented effectively in healthcare
    Keywords: Bigdata; Healthcare; Bayesian Network and Patients...

Special Issue on: IRICT 2019 Innovations in Cloud Computing Technologies

  • Ontology Building for Patient Bioinformatics of the Smart Card Domain: Implementation Using Owl   Order a copy of this article
    by Waseem Alromima, Ahmed Alahmadi 
    Abstract: Abstract: Smarting cards play a very important part in facilitating the bioinformatics information process. The current problem is integrating information, such as for the structure of similar information regarding analysis and services. Therefore, patient information services need to be modelled and re-engineered in the area of e-governmental information sharing and processing to deliver information appropriately according to the citizen and situation. Semantic web technology-based ontology has brought a promising solution to these engineering problems. In this study, the main purpose is to provide each patient with a smart card that will hold all their bioinformatics for their entire life based on the proposed domain ontology. It will be recognized and used in all organizations related to e-health. The other aims is for automatic process of important medical documents and its related organizations, such as pharmacies, hospitals and clinics. The smart card can draw up the history of the patient in terms of illnesses and/or treatments; thus, facilitating the future management of his/her medical file. The proposed ontology for e-health information offers ease in introducing new bioinformatics information for patients services without moving the structure of the former ontology. The ontology created with the knowledge-based editor tool Prot
    Keywords: Semantic Web; Domain ontology; Services; owl; Citizens; e-health; Patient.

  • Machine Learning Classifiers with Preprocessing Techniques for Rumor Detection on Social Media: An Empirical Study   Order a copy of this article
    by Mohammed Al-Sarem, Muna Al-Harby, Essa Abdullah Hezzam 
    Abstract: The rapid increase in popularity of social media helped the users to easily post and share information with others. However, due to uncontrolled nature of social media platforms, such as Twitter and Facebook, it becomes easy to post fake news and misleading information. The task of detecting such problem is known as rumor detection. This task requires data analytics tools due to the massive amount of shared content and the rapid speed at which it is generated. In this work, the authors aimed to study the impact of different text preprocessing techniques on the performance of classifiers when performing rumor detection. The experiments performed on a dataset of tweets on emerging breaking news stories covered several events of Saudi political context (EBNS-SPC). The results have shown that preprocessing techniques have a significant impact on increasing the performance of machine learning methods such as support vector machine (SVM), Multinomial Na
    Keywords: Rumor Detection; Saudi Arabian News; Multinomial Naïve Bayes; Support Vector Machine; K-nearest Neighbor; Twitter Analysis.

Special Issue on: Cloud Computing for Sustainable Intelligent Communications

  • Data Centric Redundancy Elimination for Network Data Traffic   Order a copy of this article
    by Sandhya Narayanan, Philip Samuel, Mariamma Chacko  
    Abstract: Network traffic occurring in the internet is a challenging issue due to the increase in internet users. Now a days internet traffic increases exponentially every month. Communication capability between the networks become difficult because of this heavy traffic. We propose Hashing Based Network Resilient Distribution (HBNRD) method to detect and eliminate duplicate data chunks in the packets of network layer using big data processing framework. HBNRD method helps to detect the similar files transferred through the internet and removes redundant data chunks. This results in fast communication and the proposed model attains fault tolerance because of resilient distributed approach. This data centric model can dynamically allocate the resources and can detect the data chunk repetition occurring during computation. Use of Center for Applied Internet Data Analysis (CAIDA) dataset shows that HBNRD improves the network performance by reducing the internet traffic redundancy by 60%. The data centric network traffic redundancy eliminated model is fast, scalable and resilient.
    Keywords: Network Data Traffic; Resilient Distribution; Hashing; Big Data Analytics; Redundancy Elimination.

  • Minimizing Power Utilization in Cloud Data Centers Using Optimized Virtual Machine Migration and Rack Consolidation.   Order a copy of this article
    by Hemanandhini I.G, Pavithra R, Sugantha Priyadharshini P 
    Abstract: Cloud computing is a disruptive technology used to maintain computational assets on large data centers along with the internet. The Cloud delivers on-demand applications and computing resources to its users. The Cloud data center has the ability to host various computing applications which executes from few seconds to hours. As the usage of cloud resources continues to become more and more advanced, the need for data centers grows faster. These cloud data centers use huge volumes of electricity which contributes to environmental drawbacks like carbon emission and global warming. Because the computers deployed in the data centers are working hard nonstop they get extremely hot, several cooling systems should be deployed to minimize the heat generated from the data centers and this also increase the maintenance cost. Here, the problem of high power usage in the data centers is addressed by Virtual Machine Migration and Consolidation technique. The virtualization has the ability to shift a Virtual Machine (VM) from one server to the other available servers using the VM migration technique. Here the VMs are migrated to other appropriate servers to decrease the total number of running physical server machines. This paper not only tries to reduce the number of currently running server machines to cut down the power used in the data centers but also concerns to shut down a considerable number of active racks so that unused routing and cooling equipments can be turned off thereby reducing the data center power consumption to the maximum and significantly contributing to the environment. Our work uses Modified Best Fit Decreasing algorithm (MBFD), Particle Swarm Optimization (PSO) and Hybrid Server and Rack Consolidation (HSRC) algorithms to consolidate the servers and racks.
    Keywords: Cloud Computing; Scheduling; Virtualization; Cloud Computing; Virtual Machine; Physical Machine; Virtual Machine Migration; VM Consolidation.

Special Issue on: Cloud Computing Issues and Future Directions

  • ALLOCATION OF CONFERENCE HALL BOOKING IN ANDROID APPLICATION USING CLOUD   Order a copy of this article
    by Mohana Prasad, A. Sai Eswar, A. Vijaya Manideep 
    Abstract: In each association of school there is constantly need of meeting rooms, to direct different occasions. It is discovered that there is one gathering hall in each institution, regardless of whether it is a schools and universities. A lot of divisions need to share this single meeting hall for directing its occasion. Henceforth there is dependably a plausibility of the hall being reserved by at least two departments around the same time. The conflict in timing will be known to the departments just when the day of the occasion has come to, at that point it will be past the point of no return and next to no time left for substitute course of action. The framework will be additionally being produced as an Android application, since numerous individuals today utilizes Android. Consequently a proficient and easy to use application is required to save the hall in advance and make the data accessible to others to check the status of the hall before booking. This procedure dependent on information putting away in cloud and client gets the notifications when they book the hall via sms or mail.
    Keywords: Hall Booking; Notification; Applicationrnrn.

  • Data Set Identification for prediction of Heart Diseases   Order a copy of this article
    by Palguna Kumar B., T.P. Latchoumi 
    Abstract: Over the generations, many techniques have been devised to predict or identify cardiovascular heart disease in advance. Datasets extracted from the UC Irvine (UCI) repository of machine learning plays a major role in predicting this disease. The extracted clinical datasets were huge in number and these entire datasets were not useful for the prediction of heart disease. Techniques that were used over these decades to overcome the existing issue, but most of these datasets are not accurate in making clinical decisions because of not taking proper dataset as input. This paper mainly focuses on preprocessing the needed dataset for predicting heart diseases accurately based on clinical decisions. The irrelevant data that need to be removed and process the identification of patterns that cause heart diseases. Finally, the selected datasets are analyzed with the UCI repository which is useful in designing the model to provide accurate results in predicting heart diseases.
    Keywords: Data Mining; Genetic Algorithms; Data Preprocessing; Feature selection; Knowledge Discovery Database.

  • Determining the Effectiveness of Drugs on a Mutating Strain of Tuberculosis Bacteria by using Tuberculosis Datasets under a Secure Cloud based Data Management   Order a copy of this article
    by Rishin Haldar, Swathi Jamjala Narayanan 
    Abstract: Drug-resistant Tuberculosis (TB) poses alarmingly high risk of mortality, due to complex mutations that the bacterial genes undergo in response to anti-tuberculosis drugs. In order to study the gene regions, where mutations have occurred in response to a specific drug, association mining, a machine learning technique was first applied on established datasets to group the individual gene-drug pairs and their corresponding reported mutations. Secondly, a simple, yet novel, effectiveness factor is proposed which evaluated the gene-drug pair by incorporating both the frequency and distribution of the mutations in a specific gene of bacteria. The proposed factor was generated for both single gene to single and multiple drugs. As the datasets provided mutations for a specific TB strain, H37Rv, the proposed factor helped in ranking the effectiveness of the anti-tuberculosis drugs for H37Rv. The proposed method can also be applied to any other TB strains, subject to the availability of datasets. The datasets as well as the information generated from the proposed study can be readily stored in a secure cloud storage system, either for public or private access and retrieval.
    Keywords: Drug resistant Tuberculosis; Mtb; Association Mining; gene mutation; drug recommendation.

  • Support Vector Machine Model for Performance Evaluation of Intrusion Detection in Cloud System   Order a copy of this article
    by Ved Prakash Mishra, Balvinder Shukla, A.Jayanthila Devi 
    Abstract: Intrusion detection and prevention in real time is becoming a challenge in this current moving digital world. Data and log details are growing in every minute. In this manuscript, a support vector machine (SVM) model is proposed and implemented, which is efficient, quick and capacity to handle large datasets. The basic idea of the proposed model is derived from the finite Newton method for classification problems. The experimental and comparative studies of proposed SVM is done with existing classification algorithms and related studies to assess the efficiency of the proposed SVM classification algorithm.
    Keywords: Support Vector Machine ; Intrusion Detection ; Cloud System.

  • Application of Data Mining on Cloud for Lung Cancer Prognosis   Order a copy of this article
    by Juliet Rajan 
    Abstract: Data is growing exponentially at a faster rate with the growing population. Today we are involved in building models to predict several diseases and cancer is one of the major diseases which requires a model to predict the disease at an early stage. Most of time, cancer is diagnosed at the later stage, i.e, Stage 4. Diagnosing cancer at Stage 1 can increase the survival rate of the patient by 85%. Hence the goal of the article is to predict cancer during Stage 1 itself. Another challenge the article addresses is handling huge amount of cancer data in order to come up with the model that performs accurate prediction.
    Keywords: Classification; Gradient Descent; Predictive Model; Support Vector machine; Cloud computing; Machine Learning; Precision; Recall; Classification Accuracy.

  • A Novel Approach Towards Tracing the parents of orphanage children and dead bodies in cloud and IoT Based Distributed Environment by integrating DNA databank with Aadhar and FIR databases   Order a copy of this article
    by Ved Prakash Mishra 
    Abstract: - An AAdhar card is a unique and authentic identity card in India which is being used as a valid identity proof for all types of day-to-day transactions including sale, purchase, opening bank account, air tickets, train tickets, bus tickets, and for getting benefits of government of India and state governments schemes. An AAdhar card of a person includes finger prints, thumbprints, iris images (left eye & right eye), and face image for a normal. But, for a differently able persons like blind, deaf, and physically handicapped persons it includes face, fingerprints, and thumbprints.rnThe authors believe that it is the basic right of every child / person to know the names of his / her biological parents. The technology of this earth is transforming rapidly and growing at tremendous speed. We the people of this planet achieved much technological advancements in the field of identity verification, information technology, and management skills. But, still a lot of progress is required in tracing the parents of orphanage children and tracing the relatives of unclaimed decomposed dead bodies. The parents of many orphanage children are alive and are desperately roaming here & there on this earth in the search of their children. But, it is unfortunate that the orphanage children of these parents are not able to meet with their parents and the technological advancement of this earth is feeling helplessness.rnIn this research work the authors have proposed a novel technique in which the Aadhar database is integrated with short tandem Repeat (STR) part of DNA database & first information report (FIR) lodged online in different police stations to trace the parents of orphanage children and unclaimed decomposed dead bodies using cloud computing, Internet of Things (IoT), spiral search and block chain technologies. T
    Keywords: Block-Chain Technologies; Cloud Computing Systems; Internet of Things; Orphanage Children; Short Tandem Repeat Part of DNA Sequence; Spiral Search.

Special Issue on: IAIM2019 Advances in Data Science and Computing

  • Complex Event Processing for Effective Poultry Management in Farmlands with Predictive Analytics   Order a copy of this article
    by Imthyaz Sheriff, E. Syed Mohammed, Joshua J, Hema C 
    Abstract: This world is a bundle of events which are interconnected. The occurrence of one event may influence one or more events it is related to. The study of such real time events and their inter dependence is called complex event management. The challenge of complex event management is the ability to capture real time events, analyse and take decisions so as to make the system work in a most desired or optimum way. The focus of this study is on considering the real time happenings in a livestock management environment and applying predictive analytics after analysing the parameters that impact the complex event of effective livestock management. Predictive analytics is a form of data analytics which analyses both historical data as well as current live stream data to forecast the activities, behaviours and trends. Livestock management is a significant area for deploying predictive analytics as the behaviour patterns are highly varying and dependent on various complex events happening around. In Livestock management, our main focus is on Poultry. In this research work we have designed a system to continuously monitor the events happening in a poultry farm. Data is collected through sensors to detect the moisture content, light, time and weather conditions. Individual birds are RFID tagged to help in capturing the movement stream data. A cloud-based event and data management system has been developed and analysis is carried out on historical data as well as live stream data. The proposed model employs K-Means clustering algorithm for clustering the behaviour patterns of the poultry birds. Machine learning algorithms have been used to capture varied complex events that influence the well-being of the farm birds. The proposed system has been experimented on a real time farm with 846 country chickens. Our prediction algorithms have helped to achieve an accuracy of about 78%. The parameters that enormously impact on the behaviour of livestock management have been identified. Our system has been able to predict the unusual behaviour patterns in the livestock as well as foresee disease outbreak amongst chicken in the farm house. Our future work focuses on design and development of a complex event processing framework to cater to the effective management of livestock in a farm as a whole.
    Keywords: Predictive Analytics; Complex Event Processing; Data Mining; Data Analytics.