Forthcoming articles

International Journal of Business Forecasting and Marketing Intelligence

International Journal of Business Forecasting and Marketing Intelligence (IJBFMI)

These articles have been peer-reviewed and accepted for publication but are pending final changes, are not yet published and may not appear here in their final order of publication until they are assigned to issues. Therefore, the content conforms to our standards but the presentation (e.g. typesetting and proof-reading) is not necessarily up to the Inderscience standard. Additionally, titles, authors, abstracts and keywords may change before publication. Articles will not be published until the final proofs are validated by their authors.

Forthcoming articles must be purchased for the purposes of research, teaching and private study only. These articles can be cited using the expression "in press". For example: Smith, J. (in press). Article Title. Journal Title.

Articles marked with this shopping trolley icon are available for purchase - click on the icon to send an email request to purchase.

Register for our alerting service, which notifies you by email when new issues are published online.

Open AccessArticles marked with this Open Access icon are freely available and openly accessible to all without any restriction except the ones stated in their respective CC licenses.
We also offer which provide timely updates of tables of contents, newly published articles and calls for papers.

International Journal of Business Forecasting and Marketing Intelligence (1 paper in press)

Regular Issues

  • A multi-parametric simulation study of Neural Networks’ Performance for non-linear data against linear regression analysis in Economics   Order a copy of this article
    by Marina Maniati, Evangelos Sambracos, Sokratis Sklavos 
    Abstract: Different mathematical and dynamic methods have been developed addressing the problem of forecasting, with the regression analysis to be one of the most frequently used statistical procedures. Meanwhile, neural networks (NNs) are considered to be well suited in finding accurate solutions in an environment characterised by volatility, noisy, irrelevant or partial information. In this Chapter, a simulation study compares the performance of NNs against linear regression analysis is based on multiple combinations (421 in total) of five different factors providing those cases that the NN performs better than the LRM and defining the output bias as the main contributor to the NN outcome.
    Keywords: Artificial Neural Networks; Regression Analysis; Bias.
    DOI: 10.1504/IJBFMI.2020.10027353