Title: Forecasting online user activeness for behavioural targeting: the effect of data sampling

Authors: Yuelin Shen

Addresses: School of Business Administration, Zhejiang University of Finance and Economics, Xueyuan Street 18, Hangzhou 310008, China

Abstract: Probability models have been built to model online ad click and conversion, but few studies have examined user activeness, which is the start of any further online behaviour. Using a discrete-time setting, this study builds a three-parameter Bayesian model to forecast user activeness. Users with the same arrival count in the training period are grouped into a segment and their activeness in the test period is forecasted accordingly. The forecasting results are affected by data sparsity and history, while the first factor impacts how to sample the users and the second decides how much historic data should be used in forecasting. Using data from a major ecommerce website, we find that the model performs well when the training period is short while the users are active.

Keywords: probability model; behavioural targeting; data history; data sparsity; Bayesian forecasting.

DOI: 10.1504/IJIMA.2017.087273

International Journal of Internet Marketing and Advertising, 2017 Vol.11 No.4, pp.271 - 286

Received: 12 Sep 2016
Accepted: 07 May 2017

Published online: 11 Oct 2017 *

Full-text access for editors Full-text access for subscribers Purchase this article Comment on this article