Title: Computational fluid dynamics simulation for the prediction of the venturi scrubber performance using finite volume method

Authors: Attaullah; Muhammad Bilal Khan Niazi; Muhammad Ahsan; Majid Ali

Addresses: School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), Sector H-12 Islamabad, Pakistan ' School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), Sector H-12 Islamabad, Pakistan ' School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), Sector H-12 Islamabad, Pakistan ' US-Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST), Sector H-12 Islamabad, Pakistan

Abstract: The toxicity and severity of particulates and toxic gasses resulting from industrial activities on human health and environment is a major concern worldwide. Venturi scrubber is widely employed to abate the pollutant concentration because of their high removal efficiency. For an accurate and efficient design of venturi scrubber, the complex fluid dynamic behaviour inside the venturi scrubber needs to be understood. The present multiphase Euler-Lagrange CFD study successfully provides a computational model to predict pressure drop and collection efficiency by employing the commercial CFD package FLUENT. Throat gas velocities of 50, 70 and 100 m/s are simulated. Dust particles TiO2 having a diameter of 1 μm and density of 4.23 g/cm3 are used in this simulation work. The gas flow field is resolved in the Eulerian frame of reference while dust and droplet are treated in the Lagrangian framework. The turbulence of is modelled using realisable k-ε model, droplet secondary breakup through TAB model and drag coefficient is modelled through dynamic and spherical drag laws. Results of pressure drop and collection efficiency predicted by this model are found to be in good agreement with cited experimental and simulated values.

Keywords: Euler-Lagrangian method; venturi scrubber; computational fluid dynamics; CFD; pressure drop.

DOI: 10.1504/IJCSM.2020.10029255

International Journal of Computing Science and Mathematics, 2020 Vol.11 No.4, pp.338 - 346

Received: 12 Oct 2017
Accepted: 15 Mar 2018

Published online: 02 Jun 2020 *

Full-text access for editors Access for subscribers Purchase this article Comment on this article