Computational fluid dynamics simulation for the prediction of the venturi scrubber performance using finite volume method
by Attaullah; Muhammad Bilal Khan Niazi; Muhammad Ahsan; Majid Ali
International Journal of Computing Science and Mathematics (IJCSM), Vol. 11, No. 4, 2020

Abstract: The toxicity and severity of particulates and toxic gasses resulting from industrial activities on human health and environment is a major concern worldwide. Venturi scrubber is widely employed to abate the pollutant concentration because of their high removal efficiency. For an accurate and efficient design of venturi scrubber, the complex fluid dynamic behaviour inside the venturi scrubber needs to be understood. The present multiphase Euler-Lagrange CFD study successfully provides a computational model to predict pressure drop and collection efficiency by employing the commercial CFD package FLUENT. Throat gas velocities of 50, 70 and 100 m/s are simulated. Dust particles TiO2 having a diameter of 1 μm and density of 4.23 g/cm3 are used in this simulation work. The gas flow field is resolved in the Eulerian frame of reference while dust and droplet are treated in the Lagrangian framework. The turbulence of is modelled using realisable k-ε model, droplet secondary breakup through TAB model and drag coefficient is modelled through dynamic and spherical drag laws. Results of pressure drop and collection efficiency predicted by this model are found to be in good agreement with cited experimental and simulated values.

Online publication date: Tue, 02-Jun-2020

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Computing Science and Mathematics (IJCSM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com