Designing dynamic fractional terminal sliding mode controller for a class of nonlinear system with uncertainties
by Arash Pourhashemi; Amin Ramezani; Mehdi Siahi
International Journal of Automation and Control (IJAAC), Vol. 13, No. 2, 2019

Abstract: In this paper, a novel terminal sliding manifold is introduced. Then, based on new sliding surface, we proposed two new fast converging robust controllers. The first controller is a fractional terminal sliding mode controller for a class of fractional order chaotic system in order to decrease singularity problem as well increasing fast convergence. Stability analysis of the system has been proved by Lyapunov stability theorem. The second one is the fractional dynamic terminal sliding mode controller for a class of fractional second order chaotic system so as to reduce chattering problem. For each, numerical simulations have been done to show the applicability and effectiveness of the proposals.

Online publication date: Wed, 06-Mar-2019

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Automation and Control (IJAAC):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com