Film cooling effectiveness predictions in the region of the blade-endwall junction corner with injection assisted by the recirculating vortex flow
by Kypros F. Milidonis; Demos P. Georgiou
Progress in Computational Fluid Dynamics, An International Journal (PCFD), Vol. 18, No. 6, 2018

Abstract: The region around the blade leading edge-endwall junction in inlet guide vanes (IGV) of gas turbines presents one of the most difficult hot spots to be cooled within the blade passage, largely due to the presence of strong three dimensional flows which displace the coolant away from the region before it can provide adequate cooling. The present study investigates via RANS-based simulation the film cooling effectiveness of a novel slot injection in which the coolant is ejected in such a way that its cooling effectiveness is assisted by the presence of the local three dimensional flows (especially the horseshoe vortex) that dominate the junction area. The computational predictions indicate that the proposed injection geometry provides a very effective cooling method for addressing the high heat transfer rate around the problematic region. The predicted three-dimensional flow topology and the associated endwall heat transfer are presented and discussed in order to elucidate the physical mechanisms that lead to the successful film cooling effectiveness of the proposed injection slot.

Online publication date: Fri, 07-Dec-2018

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the Progress in Computational Fluid Dynamics, An International Journal (PCFD):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com