Online fuzzy logic control for tipover avoidance of autonomous redundant mobile manipulators
by Yangmin Li, Yugang Liu
International Journal of Vehicle Autonomous Systems (IJVAS), Vol. 4, No. 1, 2006

Abstract: A redundant mobile manipulator composed of a three-wheeled non-holonomic mobile platform and a N-degrees of freedom (DOF) onboard manipulator is investigated in this paper. Redundancy for such a robot is exploited to avoid tipover via online adjusting self-motions. The dynamic model is established and a new tipover criterion is proposed considering inertia, gravity and acceleration. An online fuzzy logic (FL) self-motion planner and a robust adaptive controller are presented to prevent the robot from tipover without affecting the end-effector's motion tasks. Real experiments for a redundant mobile manipulator demonstrate that the proposed algorithm is effective.

Online publication date: Thu, 16-Mar-2006

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Vehicle Autonomous Systems (IJVAS):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com