Assessment of damper performance in controlling cable vibrations using a reliability-based framework
by Seyed Ali Mohammadi; Shaohong Cheng; Faouzi Ghrib
International Journal of Structural Engineering (IJSTRUCTE), Vol. 8, No. 1, 2017

Abstract: Owing to their long flexible nature and low intrinsic damping, bridge stay cables are prone to various types of wind-induced vibrations, among which the rain-wind-induced vibration is most frequently observed on site. External dampers are widely used to control such unfavourable cable oscillations and their effectiveness in suppressing large-amplitude cable vibrations was addressed in many studies using deterministic approaches. However, the mechanical and/or physical properties of cables and the attached dampers could not only deviate from their respective nominal design values at a given design point, but also vary considerably during the lifetime of a cable-stayed bridge and thus affect damper efficiency. Hence, for a realistic damper performance assessment, these uncertainties should be taken into account. The objective of this paper is to present a time-variant reliability-based framework model to assess how uncertainties in the structural parameters of a cable-damper system would influence the time specific reliability performance of an external damper yielded from the current design practice.

Online publication date: Thu, 19-Jan-2017

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Structural Engineering (IJSTRUCTE):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com