Molecular dynamics simulation of the effect of tool edge radius on cutting forces and cutting region in nanoscale ductile cutting of silicon
by M.B. Cai, X.P. Li, M. Rahman
International Journal of Manufacturing Technology and Management (IJMTM), Vol. 7, No. 5/6, 2005

Abstract: Unlike in conventional cutting processes, where the undeformed chip thickness is significant compared to the cutting tool edge radius, in nanoscale cutting processes, the undeformed chip thickness is very small, on the nanoscales. Therefore, the tool edge radius can not been ignored. It has been found that there is a brittle-ductile transition in cutting of brittle materials when the cutting tool edge radius is reduced to nanoscale and the undeformed chip thickness is smaller than the tool edge radius. In order to better understand the mechanism of the transition, a molecular dynamics (MD) method, which is different from continuous linear mechanics, is employed to model and simulate the nanoscale ductile mode cutting process of monocrystalline silicon wafer. The simulated variation of the cutting forces with the tool cutting edge radius is compared with the results of the cutting force from experimental cutting tests and they show a good agreement. In the simulated results, it can be seen that the thrust force is much larger than the cutting force in cutting. The simulated results also denote that the resultant force in the cutting process is not uniformly distributed along the cutting tool edge. In the simulation, the elastic springback of small thickness is observed on the machined workpiece surface.

Online publication date: Fri, 02-Sep-2005

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Manufacturing Technology and Management (IJMTM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com