Pore structure and its impact on CH4 adsorption capability and diffusion characteristics of normal and deformed coals from Qinshui Basin
by Shou-qing Lu; Yuan-ping Cheng; Wei Li; Liang Wang
International Journal of Oil, Gas and Coal Technology (IJOGCT), Vol. 10, No. 1, 2015

Abstract: In this study, the pore structure, adsorption/desorption kinetics and thermodynamics of normal and deformed coals are compared. The total pore volume and porosity of deformed coal are 2.84 to 2.91 times greater than those of normal coal, whereas the micropore volume and specific surface area of normal coal are 1.15 to 1.35 times greater than those of deformed coal. Langmuir volume of normal coal is greater than that of deformed coal. Δσ of normal coal is slightly greater than that of deformed coal which indicates that the unit area of normal coal CH4 adsorption capacity is also greater than that of deformed coal. At the early stage of the desorption process, the mass diffusivity of deformed coal is ten times greater than that of normal coal. Then it decreases rapidly, while that of normal coal decreases very slowly. At last, it will be less than that of normal coal. [Received: January 5, 2013; Accepted: April 30, 2013]

Online publication date: Fri, 26-Jun-2015

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Oil, Gas and Coal Technology (IJOGCT):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com