Parallelisation of a distributed hydrologic model
by Zhengtao Cui, Baxter E. Vieux, Henry Neeman, Fekadu Moreda
International Journal of Computer Applications in Technology (IJCAT), Vol. 22, No. 1, 2005

Abstract: In the solution of streamflow problems, fully distributed hydrologic models (DHMs), which are based directly on governing equations, offer distinct advantages over conceptual rainfall-runoff models, which are derived from empirical observations. However, the primary problem associated with DHMs is that they consume more computational resources than other models, and as a result, they have not been as popular as their capabilities would imply. A parallel DHM software system for solving streamflow prediction problems has been implemented and analysed, and an investigation has been conducted of: the efficiency and scalability of the algorithm; load balancing among processors; interprocessor communication; disk performance. The load balancing algorithms show great promise for the kind of problem addressed. The software exhibits substantial parallel speedup, but the degree of speedup is limited by I/O costs.

Online publication date: Fri, 15-Apr-2005

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Computer Applications in Technology (IJCAT):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com