Strategies to assist in obtaining an optimal solution for an underground mine planning problem using Mixed Integer Programming
by Jade Little; Erkan Topal
International Journal of Mining and Mineral Engineering (IJMME), Vol. 3, No. 2, 2011

Abstract: Mixed Integer Programming (MIP) models are recognised as possessing the ability to optimise underground mine planning. However, MIP's use for optimising underground mine planning has often been restricted to problems of certain sizes and/or simplicity. This is because the number of variables and complex constraints in MIP formulations influences the model's ability to generate optimal results. This paper reviews optimisation studies, focusing on model reduction approaches, which employ MIP techniques for simultaneous optimisation of stope layouts and underground production scheduling. Four theories are presented to reduce the number of variables and complex constraints without comprising its mathematical integrity.

Online publication date: Sat, 10-Sep-2011

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Mining and Mineral Engineering (IJMME):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com