An autonomically-healed PMMA bone cement: influence of the crystal size of Grubbs' catalyst on fracture toughness and polymerisation rate
by Patrick Biggs, LeRoy Jones II, Gladius Lewis
International Journal of Nano and Biomaterials (IJNBM), Vol. 2, No. 6, 2009

Abstract: In this study, it was shown that the concept of autonomic healing of a neat polymeric material, which was introduced by White et al. (2001) could be applied to poly methyl methacrylate (PMMA) bone cement. The bone cement brand used – Surgical Simplex®P – is one that is widely used in cemented arthroplasties; the healing agent used was 2.0 wt.% dicyclopentadiene (DCPD), encapsulated in poly (urea-formaldehyde) microspheres (diameter = 226 ± 51 μm) and the catalyst used was 0.25 wt.% first-generation Grubbs' catalyst. The microspheres and the catalyst were blended with the cement's powder in a mortar bowl using a polymeric spatula and the blended powder mixture and the cement's liquid monomer were mixed under a partial vacuum. Autonomic healing of the cement was demonstrated through a comparison of the values of the plane-strain fracture toughness (KIC) of the control cement (no healing agent or catalyst included in the powder) and the cement in which the powder contained DCPD and Grubbs' catalyst. For the autonomically-healed cement, (KIC) was not significantly influenced by the size of the individual crystals of the Grubbs' catalyst (mean diameter, DG), but the estimated polymerisation rate of the curing cement at 37°C, increased significantly with decrease in DG.

Online publication date: Wed, 16-Sep-2009

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Nano and Biomaterials (IJNBM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com