Impact of biofilms in simulated drinking water and urban heat supply systems
by F.A. Lopes, P. Morin, R. Oliveira, L.F. Melo
International Journal of Environmental Engineering (IJEE), Vol. 1, No. 3, 2009

Abstract: Biofouling and biocorrosion were studied in drinking water and heating water systems by forming biofilms on steel and on polymethylmetacrylate. In the drinking water system, biofilm development was more significant on corroded surfaces, suggesting that in these conditions they were largely protected from disinfection, probably because of sheltering and chlorine demand by corrosion products. In the urban heat supply system, results suggest a higher biofilm activity at lower pH. Sulphate-reducing bacteria were detected in the urban heating biofilms, but little corrosion was observed on steel coupons. Results indicate that surface and bulk medium properties, as well as bacterial diversity are determinant parameters when studying biofouling and biocorrosion.

Online publication date: Tue, 11-Aug-2009

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Environmental Engineering (IJEE):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com